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ABSTRACT

The solution to the steady state magnetohydrodynamic equations
governing the ﬁupersoniq expansion of the solar corona into interplane=
tary space 1ls obtained for various assumptions regarding the form in
which proton thermal energy is carried.away from the sun.

The one-fluid, inviscid, formulation of the MHD equations 15
considered first assuming that thermai energj is carried away by con-
.duction from a heat source located at the base of the corona. The
inclusion in the analysis of the angular motion of the solar wiqd, leads
to the existence of three critical points through which the.numerical
solutions must pass to extend from the sun's surface to large heliocentrie
distances. 'The results show that the amount of magnetic field energy
converted into kinetic energy in the solar wind is only a small fraction
of the total expansion energy flux and has little effect upon the final
radial expansion velocity.

The azimuthal velocity predicted by this model at 1 AU, is
¢1.19 Km/sec., which is smaller that that indicated by experimental

" observations but in agreement with previous theoretical work in this
field.

The two-fluid formulation of the MHD equations is obtained next
under the assumption that the protbns become collisionless and thermally
anisotroplc beyond a given radius. This formulation is then applied to
a two-region wodel of the solar wind in which the flow in the inner

region is described by the one-fluid equations and in the outer regiom

L



vi

by the two-fluid formulation., It is shown that the effect of the proton
thermal anisotropy upon the angular motion of the solar wind is small and
cannot increase the predicted azimuthél velocities at 1 A;U; to values in
better agreement with pbsérvations. Since a modified CCL theory is used
in the two-fluid formulation of the magnetohydrodynamic equations, the
model provides, in addition, microscopic information about the protons in
the form of velocity distribution function plots at various selected
heliocentric distances.

The macroscopic properties predicted by the models are in good
agreement with experimental quiet-time observations at 1 A.U, The proton
velocity distribution function obtained at this radius resembles closely
that inferred from in-situ prétoﬁ?measurements. The models may be used
with increased confidence to predict flow conditions at other heliocentric
radii presently under experimental investigation or to be explored in

the near future.
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L. INTRODUCTION

. I.1 The Solar Wind

The existence of a continuous high-speed outflow of‘corspuscular
raéiation from the sun, known today as the "solar wind", is a well
established fact, first suggested by Blermann (1951) to explain the
observed acceleration of comet tails pointing away from the sun, and
later predicted by Parker (1958) as a continuous supersonic expansion
of the solar coroaa. |
. In his pioneering paper Parker demonstrated that the corona cannot
exist in a state of hydrostatic equilibrium. Its large'exteng and elevated

.temﬁerature, (of the order of a few million degrees), create a pressure
force di;tribution that,canﬁot be balanced by the containing effects of
the sun's gravitational attraction and Interstellar pressure and thus
expands supersonically into space. This expansion'process is analogous
to the flow of gas through a deLaval nozzle, as pointed out by Clauser
(1960). |

The existence of the solar wind was verified by the first Mariner 2

4 results (Neugebauer and Snyder, 1962; Snyder et al., 1963), resolving a
long standing controversy between the evaporative préceéées proposed by

" Chamberlain (1960) or "sélar breeze", and the hydrodynamic supersonic

_ expansion of Parker. The history of the ideas and experimental observations
that led to the solar wind concept as presently known, has been reviewed
by Dessler (1967) and Spreiter end Rizzi (1972).

Today, after a decaﬂe of ryacecvaft observations, the large scale

features of the golar win.d cuch ¢: ite cversze flow speed, density,



composition, electron and proton temperatures and thermal anisotropy
ratios, are relatively well known. On a smaller scalé, it has been

‘observed that the coronal expansion is a dynamic process giving rise to

a multitude of magnetohydrodynamic phenomena such as shock waves, density
and magnetic field disconFinﬁities, and high-speed stream interactions.
In spite of ,thls dynamic character, a "guiet-state“ of the solar wind |
has been associated with low-speed conditions observed at certain times
to prevail for periods long compared to the expansion time (Hundhausen,
‘1972). The observed properties of this "quiet-state" sclar wind have
been summarized in Table.I for future reference.

Reviews of the observational knowledge of the solar wind have been
given by Ness (1967), Axford (1968) and Hundhausen (1968, 1970), while
recent measurements concerning transport phenomena, pressure anisotropies
and other related features,.have been reported by Montgomery (1971) and
Ogilvie et al. (1968).

The expanding coronal gas is an électrically neutral, highly con-
ductive plasma and as such it is expected to carry ﬁith-it the relatively

#weak solar magnetic field. This frozen-in flux combined with solar
rotation results in the Arcﬁimedean apiral structure of the interplanetary
magnetic field first suggested by Parker and later confirmed by in-situ
observations by spacecraft in the Venus-Earth-Mars space. Ness and
Wil ox (1967) reported a particular large scale féature of the inter-
planetary field; this is its sector sfructure associated wifh polarity
reversals observed during the céursé of a solar rotation and pefsisting

over periods of several solar rotatioms.



TAELE 1

AVERAGE PROPERTIES OF THE LOW-SPEED

(QUIET-STATE) SOLAR WIND AT 1 A.U.

ﬁadial Compotient of Flow Velocity
Nonradial Component of Flow Velocity
" Proton (electrom) Demsity

Electron Temperature

Proton Temperature

yagnetic Field Intensity

Solar Ecliptic Longitude of Field
Proton Thermal Anisotropy

Total Energy Flux Density

Electron Heat Conduction Flux Density

300-325 Em/sec,

8 Km/sec.

8.7 -'.'m'3

1.5 x10°9K

- 4 xlOAbK
| 5 gamma
140°
2

0.25 ergs cm"2 sec

7x 10'3 ergs em



The spiral configuration of the field results‘in the transport of
angular momentum away from the sun thus exerting a retarding torque on .
its outer layers. In additiom, a smaller amount of angular momentum is
transported by the solar wind in the form of an azimuthal vélocity
cbmponent in interplanetary space. |
At large distances from the sun, the momentum flux and magnetic
pressure associated with the solar wind become comparable to the total
interstellar preséure. In this region it is expected that the solar wind.
. will undergo a supersonic to subsonic transition generating a shock wave;
.(Axford et al. 1963; Dessler, 1967).

1.2 Theoretical Models of the Solar Wind

Since the early work of Parker, (1958, 1960) numerocus fluid and
exospheric models of the coronal.expansion have been proposed, Hundhausgen
{1968, 1970, 1972) has reviewed tﬁe general characteristics and conditions
.of applicablility for these models, and the accuracy with which they
predict observed flow conditions at the ea:th's ofbit.

The assumption.made in most models that the solar wind behaves

collectively as a ionized fluid cannot be substantiated in terms of
vclassical plasma theory. The exospheric models of_Chamberlain predicted

very small expansion velocities but later refinements on these models by

Brandt and Casinelli (1966), Jockers (1970), and Hollweg {1970), produced

expansion speeds comparable to those obtained from fluid models,

Nevertheless, other values are in ﬁonsiderable disagreement with pﬂservations,

in particular the proton thermal anisotrepy ratio and e*pected behavior

é++ -

of 4H igns in the solar wind.



All of the observational evidence indicates a fluid-like behavior
in the coronal expansion and therefore fluid models are expected to

give results in better general agreement with observations than exospheric

|
L

{or evaporative) models.

The general nature of the results obtaineé from hydrodynamic moﬂels
is thé same, that is; supersonic expansion of the coronal gas in inter-
planetary spéce. The significant differences among the models result
from the particular treatment of the energy equation and the inclusion of
the spiral magnetic field in the analysis. Of particular importance fo
“the subject of this dissertationm are the models of Weber and Davis (1967),
Urch (1969), Whang (1971a), Wolff et al. (1971) and Whang (1972).

Weber and Davis developed a one-fluid model with a polytropic
radial temperature dependence and included the effects of the frozen-in
solar magnetic field. The radial expansion velocity is net affected to
any large extent'by the inelusion of the field but a significant retarding
torque on the sun is predicted as a result of the stress produced by the.
spiral structure of the magnetic fleld,

Urch obtained a numerical solution to the magnetohydrodynamic

gone-fluid equations under the assumptions that hgat is carried away by
conduction from a heat source located at the base of the corona and that
the magnetic field inhibits the transport of thermal ‘energy at righﬁ
angles to the field. The ﬁemperatunﬁipredicted by this model at L A.U.
are too high, although other quantities are in agreement with obsetv&tions.
The azimuthal velocity at the earth's orbit predicted by these models lies
in the range of 1-2 K/sec. In disagreement with reported cbservations

of 6-10 Km/sec.,



Whang considered a radial model of the coronal expansion'including
the spiral magnetic field and showed that under these assumptions, mag=
netic fisld expansion energy is continuou;ly converted into kinetic
enefgy and thus was able to increase the predicted radial velocity at
1 A.U, by 17%.  Modisette (1972) has pointed out that although the magnetic
energy conversion process'described by Whéng is indeed oﬁerative in the
solar wind, its effect should not be as large when the azimuthal velocity
component is taken into consideration in the analysis. We shall comnsider
this problem in detail in the first part of this dissertation by in~
.corporating the azimuthal velocity into Whang's one-fluid model and
cbtain numerical solutions to the resulting system of magnetoh&drodfﬁamic

_equgtions. | ' -

Wolff et al. have proposed that viscosity plays a major role in
heating up the protons in the solar wind and in this fashion account for
a noﬁ-thermal source required by two-fluid models tﬁ‘obtain feasonable
proton temperatures at 1 A.U., (Hundhausen, 1970). Although their results
agree quite well with observationg after an empirical function for the

l"c:::mdu«c:t:iv:i.t::,r coefficient is assumed, the role of viscosity and uthér
transport phenomena defined in terms of classical plasma theory is not
completely understood at the present time. The observational eviden;e o
points out to the existence of randomizing effects other than Coulomb
collisions in solar wind but the exact nature of these interactions is
-not known.

. A theoretical approximation‘tb the observed proton velocity distri-

butioa function was obtained by Whang (1971b) and it allows the set ol



magnetohydrodynamic equations of Chew, Goldberger and Low (1956) to be
closed relating the prooon temperature to the proton heat flux in the
context of gq;ding center plasma theory rather than classical heat
oonﬂuction. These results were included in a two-fluid, two-region
anisotropic model (Whang, 1972), capable of providing macroscopic as
well as microscoplc information about the solar wind.

Weber (1967) and Weber and Davis (1970) have considered the effects
‘of thermal anisotropies upon the angular moticn of the solar wind under_
certain simplifying assumptions and show that the predicted azimuthal
‘velocity at 1 AU, is five times larger than that predicted by isotropic,
one-fluld models. The second part of this dissertation will consider the
solution to the magnetohydrodynamic equatlons for a two-fluid, Loo-LegLoﬂ
golar wind model which includes Whang's formulatlon of the proton velocity
distribution function to represent proton thermal anisotropy effects
upon the angular motion. The two-region formulatioo of the model is
necessary to avoid the rapid proton cooiing problem which has plagued
most two-fluid models and represents only an approximation to the physical
processes believed to be responsible for the observed properties of the

o
-solar wind.



II. A ONE-FLUID MAGNETOHYDRODYNAMIC

MODEL OF THE SOLAR WIND

FI.1 Basic Assumptions

In this section we shall obtain numerical solutions to the steady
state magnetohydrodynamiclequations goverhing the expansion of the |
coronal gas ﬁnder the éssumptions that the solar wind is a perfectly
conducting fluid, heat is carried away by conduction from the base of
the corona and that the solar magnetic field depends only on latitude,
'ignoring its sector structure.

The assumption that the solar wind béhaves as a fluid is based
upon observed characteristics of the coronal expansion. We shall consider
this fluid to be inviscid since energy sﬁpplied by thermal conduction is
much larger than that dissipated by viscosity (Parker, 1965)‘and the
general form of the viscous stress tensor for low density plasmas in the
preseﬁcé of a magnetic field is not well known. Viséous models based
upon the classical formulation for this tensor have shbwn greater dis-
agreement with observations than inviscid models (Whang, Chang and Liu,
‘1966 Scarf and Noble, 1964). The gas will be assumed to be composed of
fully tonized hydrogen with a 5% helium number density content. |

In developing the model we shall c]osely follow the approach of
Whang (1971a), except for the inclusion of the azimuthal component of
the momentum equation iﬁ our analy;isf The model wil} thus répresent
" the flow of ionized gas in the sun's equatorial plane an& it ié.further ‘
assumed that this flow is axially symmetrié_ebout.the_sun's :Qtation

akis. ' '



II.2 MID Governing Equations for the Model

The steady state MHD equations of mass, momentum and energy
conservation, assuming that charge neutrality is maintained in the plasma,

may be expressed as

7.(nn) =0 (11.2.1)

Jxg-mnX=0 (11.2.2)

’ | V.[ —g—_nk"ﬁ- —;;_mn\f),\l_-]dcv.tj_ +9V.Q 4V, (g 7))

+ maX.. =0 - (I1.2.3)

vhere P is the pressure temsor, N the Poynting vector and X an external
force function. Other quantities such as the heat flux vector G,
magnetic field B, mass density p = mn, temperature T, are represented

in standard MHD notation and gaussian units will be used throughouf the

development.

‘ Maxwell's equations govern the steady state interplanetary magnetis
field and may be written as
VxE =0 (I1.2.4)

Y.B = : o (I1.2.5)

Vi3 = %Eﬂg B  (IL.2.6)
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VE=0 : (I1.2.7)

For ‘a perfect conductor in an inertial frame of reference the

~ electric field is given by

|
E=z-_ouxB (11.2.8)
and the Poynting vector takes the form -
N -~ & ExB 11.2.9
. — T AT ExE ( 29
From (II.2.4), (II.2.6) and (I1.2.8) we obtain
Ix (WxB) =0 (I1.2.10)
<and
Lod t ' ‘
L IxB=_ (vxB )xB (11.2.11)
c = = 4T|“( ) , -

[

We consider now the spherical coordinate system (r,{,w) centered
at the sun and aligned with the ecliptic plane, shown in Figure la. 1Im

this system we express the magnetic field B and velocity vector u as

U= et () +uit, (M§) (1I1.2.12)

B = B (69 +eu Bu (YD (11.2..13)'

—

The mass conservation equation (II.2.1) becomes then
oy’ .
— (N |'2 =0
== (At
or ' ‘
_ 2 L . .
NWe < = conwt. (11.2.14)
Since the model is assumed isotropic and 6ne-f1uid, the preésure tensor
is given-bj R
P = (2nludy | (T1.2.15)

vhere n is the particle denmsity, k Belimi.r.n's coastan: cn! T the unit



i1

Figure 1

a) The spherical coordinate system.

b) Definition of the magnetic field angle ¢.



ECLIPTIC
X| - PLANE

(a)

(b)
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tensor, It follows that

v.P = v{2nkT) (11.2.16)

Introducing (II.2.12) and (1I.2.13) in (II.Z2. 10) we cobtain

I uxB)= ] (11.2.17)
%(@xB)= = a.-[ r(UBy—%eB) =0 LA
. which implies

I‘U—rB..,-f‘UL....B,- = const. = C' (11.2.18)
An analogous procedure with (11.2.5) yields

D (r?
or
r? B, = censt. C (I1.2.20)

The radial and azimuthal components of the magnetic force may be obtained

from (II1.2.11) and are given by

‘.‘gf(gxg)r = Br‘_“ Z_ (rBw) | | Fn.é.el)
and
«T W (4x8), C rBu) - are.e)

where sin { has been taken as unity for the equatorial plane mndel under
consideration,

¢ The external force function X in the case of the solar wind is

glven by the sun's grav1tat10nal attraction

v - o BHo
=

7> (11.2.23)
where G is the universal gravitational constant and M, the‘mass-of the
sun. The radial and azimuthal components of the momentum equation thus

take the forms
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mnC"-r u"')" V(an’l').- inr 9,.0' w)

_ mnSMe ' (11.2.24)
rZ.
and _
E§r ‘
.__. e T
m n Yr Cf'u-u) =anr 3 rc Bw) (11.2.25)

Here m is the mean mass per particle and n the particle density per cm .

In the case of the energy equation, proceeding in an analogous fashion,

we obtain
. ¢
- VN = = ar B (B U - u...B,)] (I11.2.26)
. { : o 2 7 '
V<P %) = = ‘g,': (2nk1 Ur? ) (11.2.27)

In order to obtain an adequate expression for the heat flux temrm
7.Q in (II.?.3), we must take into account the inhibiting effect of the
magnetic field upon the transport_of thermal energy perpendicular to the
field lines. Following the approach of Urch (1969), Wolff et al., (1971),
Wﬁaﬁg (1971a), Gentry and Hundhausen (1969), we express the radial

tcomponent of the heat flux term as

v.q ..__..__._r coS | (1I.2.28)
(@)= 5 2 ke T |
where ¢ is the angle between the radial directlon and the magnetlc fleld
as shown in Figure 1b, and K is the thermal conductivity coefficient.

Tht energy conservation equation (II.2.3) is thus given by

—l:i-,_;%[r (5nk:+—mnu) J"FLEF'O- 'Kf-‘o!¢9’ )+

.c-r;'rt Br rzBu(Bw“-r 'uus J)J"' 2. (@nkTte ) —
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m,—,éﬁo Y = O (11.2.29)

This equation may be integrated once with the result

2
ﬂ1er'z(ﬁ;kll-+ Bw - rndahhsﬁy ﬂTu':) r u Em“
4mTn r -4

2 2
= K cos’'d dT . ¥ (11.2.30)
g . i
where F is the total emergy flux per steradian. The second term on the
left-hand side of (I1.2.30), not included in Whang's analysis, represents
the energy flux associated with the rotational motion of the gas.
The azimuthal component of the momentum equation (1I.2.25) may be

integrated directly (wéber and Davis, 1967) to give
rit,, - FBwBr/A‘lenur = const.= < (11.2.31)

Equations (11.2.18) and (11.2.31) may now be used to-calculate
Cuy -t ATmasrc! +B.<’

(11.2.32)
"4Tl'mn‘u|- b Br -

(11.2.33)

By =L 4rmqurC<‘- Br+<‘.)
' T ATmnYT - Bt
The remaining terms in (II.2.24) are obtained from the above relations

and the equation takes the form

AT C"“@ ridT_,_ U "' 2Uu Buw Be

Uel “m -
_ E‘L‘f'." = )M T m_dr  Zunnuc(i-A2) (11.2.34)
dr ¢ u, 2KT Bu®
| T Tmn (AR
where 1. l € z
A --._..” = Bl"/dﬂ'fmﬂ‘ur (IX.2.35)
L }
and A is defined as the reciprocal of the radial Alfven Mach number, MA'

‘Tt is interesting to compare (I1.2.34) with the corresponding

equation obtained by Whang; this will be carried out in Section II.3.
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It is convenient to introduce

Yongd = By /Br : (11.2.36)

in equation (II.2.34). Hence

4KT eno 2krd1"+.u 4‘20m‘\1r‘+4ﬂé/-\

dur _ v Tm Ci-AD (11.2.37)
dr ri (l A*-}a ) - 2kT
T AR

The governing equatioms (I11.2.30) and (II.2.37) may be cast in
dimensioniess form by considering the flow conditions at a particular
radius. Let us denote the conditions at ¥ =4 by the subscript indicated.
The reason for choosing 3 as the subscript will become apparent as we pro-
ceed with the development,

We introduce the following dimensionless variables

V= efug 3 W= Yllu, ;0 = T ; Z=1/0 (11.2.38)
and dimensionless parameters 7, § and &, defined by | A
Y= GMa/f'a'Ué ; = My /2T, ; 8= Uas/Uey  (11.2.39)
Equation (I1.2.37) may now be written in dimensionless form as-follows,

YE ¢jg 2 2. 2!5!;;L1V4%1nqﬂ
dv v 26- F - +55 22N/ VER | (11.2.40)

da | H gvi-o- §/:.V+a.n B/ /v 2?)

where the parameter
2 € 2 :
 p=hy = Br, /4Tmazug (I1.2.41)
is defined as the reciprocal of the radial Alfven Mach number at the

re.erence radius,.
’ .



17

The denominator of (II.2.40)
Evie- Sav tan% [2°C !-w/‘/zz) (11.2.42)
will vanish for three sets of values of the independent and dependent
" yariables, denoted respectively as (Zl,Vl,el), (ZEJEfGB) and (Z3JT?B3).
These three sets corFespond to the critical points of (11.2.40), first
studied by Weber and Davis (1967); each critical point occurs when the
fluid velocity eguals the characteristic propagation speed of a possible
wave mode in the medium.

The first critical point, closest to the sun (r=r1), corfesponds
approximately to parker's critical point where the fluid velocity equals
‘éhe local characteristic thermal speed of the plasma, in our case modified
by the presence of the magﬁetic field. The second critical point
represents the singularity introduced in (1I.2.40) by the azimuthal coﬁ-
ponent of the momentum eqqation. At this b&int the radial component of
the fluid velocity equals the local Alfven speed as determined by (11.2.35)
when Mi = 1.7.At the third and farthest away from thé sun critical point,
the radial velocity is approximately equal to the local Alfven speed as
ddetermingd by the total magnitude of the magnetic field, Since tan ¢ is

small in this region, we exfect the third critical point to be located
in the immediate vicinity of the second.

The general topology of the éolution differs little from the one
given by Weber and Davis and a sclution cﬁrve extending from the sun's
surface to lﬁrge heliocentric distances must pass through all three
critical points. A schematic representation of this topology is given in

Figure =; (VE,Ze) is a node point while (Vl,zl) and (V3,23) are saddle
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Figure 2

Schematic representation of the topology of the solution for

near the critical points,
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points., It is then possible to determine the slope of the solution curve
at the saddle points from the values assigned to the dimensionless parameters.
Because of this topology, we choose the third critical point as
the reference radius for the dimensionless equations. This choice will
eventually determine the success of the numerical integration scheme
utilized to solve the system of differential equations. Hence, at Z =1,
(II.2.42) takes the form ,
E—1I- '5/4 tand_ /(l—yu.) = O (11.2.43)
from which we obtain for E 7 o .

E =(-/C ""/"'/“‘-"29';3) (I1.2.44)

.

The denominator of equations (II.2.32) and (I1I.2.33) vanishes at the

second critical point. Since uw and Bw must remain finite and continuous,
we require that the numerators must also vanish at this point. Hence

we must have

ATmn, Ypc"+ B! = o (11.2.45)

and C' and c" related by _
L) I
C = - C/Brz (I1.2.46)

where the subscript refers to the flow conditions at the Alfvenic crit-

ical point.

In a frame of reference rotating with the sun B is parallel to u.

In this frame (Pneuman, 1966)
Mp a,-{lr

o

Br Bu

. whére~Q dehotés the angular‘velocity of the dufér,layers:of the sun,

(I1.2.47)

Introducing (II.2.47) in (II1.2.18) we obtain
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2
clz- 00?8 =- 208, (11.2.48)
and
c el = _(Zr: (11.2.49)

Introducing the dimemsionless variables and defining two additional

parameters ¢ and [, where

¢ = Fz/r_., ; T = L103/Un (11.2.50)
we can write the azimuthal component of the momentum equation as
Sw = T2 4 V+4ﬂ95 (11.2.51)

where tan ¢ is given by
tand = L@t 2’)/\12(!70/\(2‘) (11.2.52)
At the reference radius (Z = 1), these equations reduce to

S= -}4.-;963 +Z (11.2.53)

and

tan gy = 2@in/C l-/-u-) (11.2.54)

We may proceed in analogous fashion with the energy equation (I1.2.30).

Introducing the dimensionless paraméters

o = 2Nyl k/-"}(a cos’f, | .(11.2.55)
and ' s
2
H = F/ﬂamﬂrara : (11.2.56)

with the thermal conductivity for ionized hydrogen given by (Spitzer,

1962)
S b= KT T - - (IL.2.57)

we obtain
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JQ of.?‘”#‘s [ ,u.V > SSZ"__ andg — —
da  2%eTespl® (B8 Grindez 5 o e (11]2 58)

The dimensionless parameters, ¢, £, § and H, measure the ratios of

various energy flows at the re.ference radius. In additien
2
F. o(coS;z{_.,H) 'm6G l'lg K (11.2.59)
Y7 g% I\ 2kry /

that is, the ‘total energy flux per steradian is proportional to the

constant K in the thermal conductivity coefficient (Whang, 1971a), In

reality K is a slowly varying function of the density and temperature

‘of the gas (Braginskii, 1965) but in the case of the solar wind it may be

assumed constant.

_As shown by Whang, o is not an independent parameter. At the
reference radius the numerator of (II1.2.40) mustAvanish in order for %
to remain fi;tite and V continuous across the critical point. Hence,

from equation (II.2,58) we must have

o<§[ (!4éz)+}.¢+an9$5+—-—-l-l b/u"'dﬂég, b'_] (11.2.60)7

and from equation (II.2.40)
¢ 2-¥5- (d J 53425‘_;/44&“4%/(’/*) (11.2.61)

The parameter @ is thus given by
2- Y5+ EO% 2 58 prheads /D)
E[Z(H ) tptaid; +(5/28)- H-dptangd,- 5]

and the solutions for V and g have the general form

V:'V(Z,H,Xﬁﬂa,g,f&)‘ ) Py (l- >H°l¢3|€)/‘*)

o = (I1.2.62)

. (1I1.2. 63)7 ,

For convénience and future reference we suzmarize below the principal
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equations obtained in this section and the relations among the different
dimensionless parameters defived.

Radial Equation of Motiom

‘ZS.wa'!u"qg
dy .Y 26 -(¥Ef2)- zde/da +§5w+ X R

dz 2 §V ~ @ gﬂ\/—l-a.n 75/220/4/\'2")

Azimuthal Equation of Motion

(W=532 +Viand | (11.2.65)

with

tang = L (ol 2,23/\,2(17“/\!2‘) (II..2.66)

Enerpy Equation

de ocEcossJa. ,‘I 2 \ ;N.t. 56 .M.},._,é_l_]
dz zo l_(‘ QiﬁSP @ Tz

(I11.2.67)
Relations Among Parameters 7

E = (l-ya)/(l-/u/cosz‘gfa) . FII.E.GS)_

2-¥84 €% 2 55}1"’4»‘:;&5/@-—/4—) | ('I:I.E 55)
g[’é (‘*52')*/‘*““1953*(5/2 £)-H-8 +“"?‘r ¥l o

tandy = $-2 | (I1.2.70)

of =

o= 1+ -l'a-nsﬁa,(f-/&) /& S (I1.2.71)

I1I.3 The Case of a Purely Radial Fxpansion

In Section II.2 we have obtained for the radial component of the

momentum equation
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44T_GMo _ 2krdT , 42, 24w Bu Be
c“\lr:. el m T T m dr W gumnUe C1-A2)

dr T Ut~ 2KT _ BS ‘
m  4wmn(i-A32)

(1I1.3.1)

Whang (1971a), in considering the conversion of magnetic field energy
into kinetic energy in the solar wind, obtained the corresponding

equation for the case of a purely radial expansion as

4LT  &Mo _ 2krdT

dur_ Y| Tm 3 L"EZF (11.3.2)
dr r]owR 2T _Bo
m 4mtmn

We immediately observe that the assumption in (II.3.1) that uw=0 does

not reduce this equation to (II1.3.2). The third term in the‘denominator

remains divided by the factor (I-A?) which leads to the existence of three

ériticai points rather than one, as discussed in II.2.

| The'mathematical source of this discrepancy lies in the assumption
by Whang that the velocity vector u has the form
U= S U, , (11.3.3)
vwhile the magnetic field vector is represented by
§ = erB. + CuwB, : (11.3.4)

In other words, the limiting conditien uw=0 is imposed at the onset of
E‘I:he analﬁtical development rather than on the.final differential equation.
The limits obtained in each case are different, leading to the observed
discrepancy.

Physically, the exclusion of u, froﬁ the analysis in the manner
described above, implies that transversé;flqw‘pefturbatipns that should
propagate parallel to the magnetic field as Alf;en waves, are’ignored.

Near the sun ur>>uw, A>>1 and the third term in .the denominator
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of (II.3.1) is of opposite sign and smaller magnitude than £he corresponding
ferm in (II.3.2). At large heliocentric distances, A<<l and this term
;educes to that given by Whang. Consequently, the effects of the magnetic
field on the flow velocity are not expected to be as large as indicated

by Whang. Modisette (1972) has carried out a limited analysis of this
problem.and ;eached gimilar conclusions, The numeriéal results obtained

in Section II.4 will show that the effects of the magnetic field on the

flow are indeed smaller than those predicted by Whang's mﬁdel. In pér—
-ticular the "hose angle"™ of the interplanetary magnetic field is well‘

behaved in the vicinity of the sun, tending to 180° as F—»Tan

I1.4 Numarical Solutions for the One~Fluid Model

At the reference radius (Z = 1) equation (II.2.64) is of the form

(—) and may be evaluated by making use of 1'Hopital's rule. The result

T is /
g_%)s__;_ Q,—-Ff. ) (__.._) [(—F e)+4Fe;] (IL.4.1)

The two solutions of (11.4,1) correspond to the two possible branches

of the solution curve for the radial velocity, denoted as Ua and U
1

“in Weber and Davis model and indicated schematically in Figure 2. The

constants €15 €5 fl and f2 are related to the variocus dimensionless

parameters previously defined, as follows

e = ‘Zé%{‘;;’:és [(:/.)(a 2 Dz bz _ ] d, +25§b (I;.&.E)

S ptands E{_-
e, = eé%ﬁ;)j [(z @+ 292 T+ ( d:) +as;, s
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+23§bf

‘F. ‘g/...-la.nq‘a[ (az/ua_,_/..).;-l] +2§

Q=-p)*

f, =~ zgf*J‘“"""’[ (A)-1]- (£)

where

d, = I *EC2 b, e
| KEC, + ; +42E<§ca+“"1‘a"'25"" S'Cd%);]

(1I.4.3)
(I1.4.4)

(I1.4.5)

(11.4.6)

£Jz,:= oL Cy— d | b A
(=& 2)( d%9)5+ “‘Ez" L4 [*gc-?ﬁ“"?‘a"'zs'.”z?{’ (j‘g%)a]

(5 = 2 4"‘"?;5 44»151{5-;-2!'

(11.4.7)

(11.4.8) -
(I1.4.9)

(I1.4.10)

(IT.4.11)

(11.4.12).
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b= C.4a, tfand, = —5('7*)/(‘-/‘«) (11.4.13)
= Cl -i-qz)wla.m;ga = - /4an¢3/ (l—/u) (11.4.14)
Q, :[3/4.—I—-0"‘<l -V)J /Cwil)(!—/u) (11.4.15)

a, = ~/{-p (13.4.16)

The correct eolution of (11.4.1) is given by the (+) sign and corresponds
to a positive slope at the reference radius.

It is convenient to express the general solutions for V and B as
.functions of commonly used plasma parameters, rather than those given in
(I1.2.63). TFor this purpose we introduce B, the‘ratio of the thermal
pressure 2nkT, to the total magnetic field pressure B2/8ﬂ. Thus at the

reference radius krr ‘ 2 :

' n

ﬁa = ?_,2.:’___2. = 2 oS’k (I1.4.17)
By /3T EM

and in general

P= Baces ‘Aoz /V(.:OS | - (IL.4.18)

Making use of (II.2.68) it follows that the parameter £ will be given by

C‘E*Fa "[(2 Pa) QcosJ ] (1L.4:19)

once 63 and ¢3 are specified. The two solutlons of (1I1.4.19) represent

two possible choices for the reference radius. The (+) sign corresponds
to the outer critical point r=r, vhere £>>1, while the (-) sign corresponds
to the solution that should have been used if we had chosen r=r,, (5=ﬁl,
¢£¢i) as the reference radius where E~l. Thus the general solutions for
V and § depend on five independent, dimensionless parameters, namzly B,,n

¢ Hy, @4 and y. Hence we may write
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(I1.4.19)

lV:: VCEJP‘I¢3J§J Y.'H) ) e‘-‘e(z:ﬁljéﬁig:fc H)

From the values assigned to these parameters we can compute the physical
location of the outer critical point or reference radius, and the flow

velocity at this point., The results are given by
21
r (Gﬂog /2
3 -
0*Y
Ur, = §’_r'.1‘_9_:(2 A (I1.4.21)

We observe that these quantities are uniquely determined by the particular

(II1.4.20)

values chosen for the parameters.in a given model., Once a solution has
been obtained, it is not possible to adjust the location of the critical
point to obtain a best compromise between the predicted temperature and
flow velocity at 1 A.U,, as the case of strictly raﬁial flow (Whang,
1971a, 1972). In this sense, we expect the solutions to our system of
equationslto be unique for the particular set of parameters chosen.

‘ Since the reference radius is located at a certain distance from
the sun's surface, two numerical integrations of the differential equatioms
starting at the reference radius are required to obtain a complete
solution: a) An -inward {(towards the sun) integration from the outer -
critical point, and b) An outward iptegration to large heliocentric
dis“ances.

The inward integration must pdss through two additional critical

points and preéents the most difficult computational problem. HNevertheless,

the proximity of theé Alfvenic critical ﬁoint to the reference radius
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considerably simplifies this problem. An inward numerical integration
starting at the outer ¢ritical point will always pass through the
Alfvenic critical point since this is a node point (Fig. 2) and the
intégration error accumulated over such a short distance is extremely
small ana does not affect the solution in the vicinity of ZE' Thus,
the inward integration problem reduces to that of finding 2 solution
curve starting at the reference radius and passing through the inner
critical point. This simplification is the most important reason for
choosing the location of the outer critical point as the reference
.radius.

Further insight into the behavior of the solutions as a function
of the values assigned to the parameters in (1I.4.20), may be obtained
by considering certain approximations, The five parameters are expected
to interact to some degree upon the final solution due to the non-linear

character of the equations. The purpose of the foilcwing approximate
analysis is to find an optimum strategy for the selectiou of parameter
values which will satisfy observed conditions in the solar wind, and at
the same time generate solutions passing through all three critical
¥
points and satisfying conditions at infinity.
At. the immer critical point (Zl, Vl’ el), the numerator and denom-

inator of (II.2.64) must vanish simultaneously for u. to remain continuous

across the point. Hence we must have

(g¥2-8,) (2% p/¥) - B p\hbaddy = © (11.4.2_2)‘
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and -

¥E o rdey  WiSRI(22 tand, = |
[29,_,2_;_2.(‘:[._%14\51,5%](2. /;/«.)4-25\4.?,/‘ and, = O | (11.4.23)
The energy equation (II.2.67), at the same point, has the form

. ¥ 5o,
) 2' sf‘lCO5¢ [' ( ) !
(II 4 24)

Thus we only have two independent equations to compute three unknowns
Zl, Vis 8 and unless we make some assumptions regarding one of the
unknowns the location of the critical point cannot be detérmined without .
actually integrating the differential equations. Equations (II.4.23)
through (I1.4.25) may Ee normalized to the flow conditions at the inner

critical point by introducing the following parameters :

2 2., )
€, =BY76, ; pu=pNE ;H =HNE; ¥, = 372 anses
f; = FE.-/‘/n 7 J = BW'/V' (II.4.26)
and from (II.4.23) through (II.4.25) we obtain

§a"’)( "')“') - El/"' ‘h‘-"'?-('t =0 : '(11.4.2_7)

[2.-‘531 (ng +§,§ J(l/‘)+25 '5/1 44-'\55 =0 (II.4.28)

Hence

b0) - [ <r+s=)-yu-+d«¥'4—5--”'-Sy*-*“ﬂ x5

These equations are analogous to those obtained for the outer critical

point and we may wrlte

EZ— J§1-+}§. ' -P:ZE'ESL/Z 4““‘Q$I/4:f,}‘:)
g,[ (l+8‘)+ﬂ.4ané,+(5/z§b H-d: .44-:?! 2{]

(11 4.30)
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hence, from (II.4.25) /
o4 = p(cos9£b Z, 9 casé (11.4.31)

We now make the assumption that in this region the temperature variation
as a function of radius is given by
m
Q=% (1I.4.32)

Hence

ds _ 2™ 4_9.) = m (11.4.33)
az di /3

This assumption is approximately true In the region considered, for most
solar wind models. (Hundhausen, 1972); we introduce it here for the sole
purpose of estimating bounds for (~—) at the reference radius., Intro-

ducing (I1.4.32) in (II1.4.31}), we obtaln
E? — <:c(<ho$ 2 dJ‘i/rﬂ4u044
! D‘<t cosz¢l

Since @xc052¢3/a1c052¢1)>1 and Z1 mist be less than one to represent the

(11.4.34)

inner critical point, we must have

de | '
Eﬁ)a £ -6.4 (IT.4.35)

In addition Erel, hence

'g\flz_f}'_ Q, (I1.4.36)

) N .
and neglecting the effects of the azimuthal velocity, from (II.4.24)

we may write

de o
26, - arg._ 2, <Zﬁ ~ 0 (I1.4.37)
!
Introducing (IL.4. 32) in thls expression, it follows that

E m-
™ 11.4.38
z,~ (5 m) (11.4.38)

The term in parenthesis may be estimated from previous solar wind models

and expected conditions at the eritical radius and we find that it is
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less than one. Thus, if Zl<1, we must have m>-1. Equation (II.4.35)

can then be expanded to include this lower bound,

de ‘
- — -0, (II.4.39)
I< ( a2 )3 4 |
At the Alfvenic critical point, equation (II.2.64) reduces to
dv') '
V) _ _2SW./Y,4an I1.4.40
(&?1 : z/ 2 9{2 ( )

Because of the proximity of this point to the reference radius, we may

write

ﬁ{_;.’)zg:, %’Lg _zé/-ﬁa.«gfs (11.4.41)

Introducing (II.2.70), it fellows that

| (i_:)a ~v_2( 1+ T/tands) (I1.4.62)

Thus for a given angle ¢,, (-‘-i-‘—r) depends almost exclusively on the value
30 \Gz’3 9€P _

agssigned to the parameter (.

It is now possible to formulate an optimum integration procedure
based on the above results which will generate the desired solutions.
The numerical integration process is optimized by introducing a new
independent variable X such that

Y=z (I1.4.43)
‘.The governing equations may now be written in terms of this new variable

as follows dv _ v _p(x'\/,e)

= - I A
& T X 3068 (1440

where . 2

£C (V.8) = 26-?!5%4%3%45,?2%2(%) +

2eur* [(oxXY (ko] s
Vo (pA)® d-ph)?
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and

X,¥,8) = vi-o - g f ([- ,(!) | b

3( )=% v C’/*"’(t/v) (11.4.46)

In addition

je o<.§Ce5 9‘3 (l-l-"’dn 95) h()t Vv, G) (I1.4.47)
K e/

where

h(%v, ©) _-_..'.(v'..vm)(vwm)ﬁ*’("“‘ ,/v

(1—177( gigl
/Lg V(I/u\(’/(c) \/a,]+ b’)( (I1.4.48)

and Ve is given by equation (11.4.50) below.

-

Given an initial set of values for the parameters consistent with
expected solar wind conditions at the reference radius and sﬁch that
equation (II1.4.39) is satisfied, equations (II.4.44) and (11.4,47) are
integrated inwards for X>14¢ by means of a fourth-order, Runge~Kutta
algorithm. ‘This integration is carried out several times, each time
adjusting (%2)3 by varying £, such that the numerator and denominator
of (II.4.44) vanish simultaneously or within a small fraction of an
integration step at the inmner critical point. Once this condition has
been achieved, the integration 1s allowed to continue towards the sun's
i!s.urfer.c:e.' The solution thus obtained is valid in the range r®<r<ir3 but not
beyond. Whang (1971c) has shown that once H is specified, the behavior
of the solution for § for large valﬂeé of Z is governed by the value
assigned to the parameter Y. We now integrate equations (II.4.44) and
(I1.4.47) in the outward ditection (X<l-¢) utilizing the value of (

determined by the inward integration. Again, the process is repeated .

several times, each time adjusting ¥ such that g#o as Z) », The value
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of 7 thus obtained, is used to find a new value of { by the inward
integration procedure previously described and then the equations are
once more integrated in the outward direction to find the corresponding
~ value of 7. |

This iterative prochufe is necessary because of the non-linear
character of the equations; it is repeated enough times until the inner
and outer solutions match across the reference radius with typically
.01% accuracy. The outward integration is then continued to the limits
imposed by the available coﬁputational accuracy and type of computer
used to perform the calcﬁlation.

| For the problems considered in this work, we have utilized Iverson's

(1962) APL/360 language because of its unique characteristics, accuracy
and conversational nature. A listing of the computer programs developed
to obtain the numerical solution to the one-fluid MHD equationé is given
in Appendix A,

A problem that has plagued all models that numerically integrate
the energy equation, is the extreme accuracy required to specify parameter
‘values. This is due to the form of the equations when magnetic field
inhibited heat conduction ié assumed in the analysis and the requirement
that the solutions must pass tﬁfough one or more critical peoints. OQur
model is no exception, although the formulation of the equations in the
forwr given by (Ii.4.44) and (1I.4.47) was found to reduce the accuraéy ‘
requirements by several orders of magnitude. To obtain a solution thaﬁ
passes thrqugh all eritical points, t must be determined with typilcally

8-digit accuracy; to extend this solution to approximately 3.5 AU., 7
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must be determined with 12-digit accuracy, although this figure is
strongly dependent upon the value assigned to H. I1f we try to obtain
numerical solutions beyond this region, the computation time becomes
prohibitive and other mathematical methods must be considered to obtain
the desired solutions for the differential equationms.

For large heliocentric distances, it is possible to find approximate
analytical solutions for our equations in the form of asymptotic series.
At large r, the direction of conduction heat flow is dominated by the
spiral angle of the magretic field and the conduction heat flux decreases
muéh faster than the thermal energy flux. Hundhausen (1971, 1972) and
Durney (1971) have shown that in this case the flow at large r corresponds
to an adiabatic expansion with

‘ O ;{'4/5 (I1.4.49)
Oon the other hand, the velocity is expected to approach the limiting
value V=V ﬁence in the limit, W, #—~o and V-V,. Equation (11.2.67)

reduces then to 2
;{ — \Qn /LIZ;
Ve

¢For large r we may neglect the azimuthal veloéity component and write

(11.4.50)

the governing equations in the simplified form that follows. Thus

YE _de -
26- L= - - ,
d\/zv v cde o (I1.4.51)

dz 2 \gv% e g/gj(,

and

do s S iy Xl T S H-B) e
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The formal asymptotic expansions of Whang (1972) can now be used to obtain

a solution for these equations valid for large Z. Thus we write
w0 .
V=Ve (€ ZC§ E7)
© = Ae“( I+ Zch &)

(11.4.53)

where e:=2.-1/3. The leading terms in (II.4.47) represent the expected

behavier of V and § as Z —e,

it follows that

d\' - - __, EGZC_)-I-@ C,J - (I1.4.54)
and o .

do _ _A 44 ZCu)ce’]

— =-2¢& + JH) 2 (1I.4.55)

The coefficients C . are obtained by introducing (1I.4.53) trough (II.4.55)
in (II.4.51), and (II.4.52) and setting the coefficient of every power of
¢ equal to zero, For the one-fluid model under study we have calcualted

the first few coefficiente as follows
CIO X/P } cu =—5A/2§P ",C-lz =
Ci3 = -5C Csclb"’x )/2P (I1.4.56)

Cia = [I5¥ECu - 35C, (E5Cu+ADI /1EP
and
Coi=0 ,Cz "'E,clo Cscto"z)/A s Cza= [Mcw CgSCu+A) Gﬁcaa JA
(I1.4.57) .
where

> 0 2 '
and o (I1.4.58)
Vo :::-Yab +H

The constant A inm (II.4.53) is determined from the conditions obtained
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at the point ¢ from the numerical integration such that both gblutions
‘join smoothly at this point. Hence

A 9o-8C(5C0-3) £.°
B 45;44..837(:2F??f— 25S< 0 ),/*if’

Once the solutions for V and p have been obtained, we can compute

Sw= ze® 4 viand | (11.4.60)

(II1.4.59)

and
tans = 5CrZ E:—G)/\/&'BC[-/J.&-‘/V) (I1.4.61)

Twe solutions té the one—fluid MHD equations have been cobtained in
‘the manner described above. The parameter values used in each solution
are given in Table II with the corresponding dependent parameter values
and flow conditions at the outer critical point,

We observe that the location of the three critical peints in each
solution is not very different from that given by the polytropic model of
Weber and Davis. The numerical solutions pass smndthly through all crit-
ical points and approach the conditions V=V_, W=0 and ¢=0 for Z- =,
Although both solutions give reasonable values for u and T at 1 A,U.

Igthose corresponding to Solution #2 are in better agreement with quiet
time solar wind observations; numerical values for this ‘'solution are

given in Table III for 1.08 =< r/ro < 2086.

II.5 Discussion of Results and Physical Interpretations

Figures 3 and 4 show the results obtained flor U, U T, B, and

¢, for values of the parameters corresponding to Solution #1; Figures 5 .

and & show the corre5pond1no results obtalned for Solut1on #2
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TABLE I1

Parameters ' Solution #1 Solution #2
H 0.8 - 0.85
$s 169.8° 169.8°
4 ' 0.19481 0.19531
By 0.2 0.2
y 0.10924 0.097751
Related ﬁonstants:
‘o« . 0.46509 0.31673
m 0.96529 0.96529
3 10.035. 10.035
5 0.014885 0.01538
c : 0.98384 0.98388
13 263,28 Km/sec. 272.98 Km/sec.
wy 3.91 Km/sec. 4.198 Xm/sec.
z, 25.237 26.234
r, . 24.829 | 25,81
T, 3.74 3.96
T, 5.01 x 10°9K 5.39 x 10°°K
u_ . 326.83 Km/sec. 349,86 Km/sec.
¢§%)3 -0.588 - =0,523

@%;53 0.167 | 0.173



~ TABLE TII
ONE-FLUID MODEL, NUMERICAL 'SOLUTION #2

r/r Up Yy ‘ T 49 @ 5 Va

o] (Em/sec.) (Km/sec.) . (°K) dz (deg) g A (Km/sec.)
-1.084 22.29 1.99 '2.68x106 -62.78 179.5 .0189 - 6101 1975
1.494 47.61 2.50 2,28 " -37.70 179.3 0162 1704 1966
2.065 76.05 3.03 1.93 " -22,75 179.1 ,0165 558.8 1798
2.851 107.2 3.53 1.65 " -13.83 178.7 .0190 208.0 1546
3.944 138.3 3.98 1.41 " - 8.54 178.3 L0240 84.20 1270
5,465 167.4 .39 1.19 ™ = 5.30 177.7 .0323 36.25 1009
7.603 195.2 4,65 - 1.01 “5 - 3.26 ‘ 176.8 L0454 16.06 783.8
10.70 220.8 4.77 8.54x10 - 1,97 175.6 - .0669 7.16 592.8
14,92 - 242.8 4.70 7.20 " - 1,21 173.9 . 1000 3.32 445,1
21.86 263.9 4,42 5,93 " -.700 171.3 L1593 1.43 320.1
29,15 277.8 4.05 5.10 -, 446 168.7 .2280 . 768 248.2
39,16 290.2 3.62 4.36 ¢ -.288 : 165.3 3277 407 191.5
50,47 300.8 3.14 3,72 " -.187 161.0 L4631 .218 . 148.8
71.89 310.6 2.062 3.1z -,118 - 155.2 L6518 .112 115.0
97.19 318.7 2.16 2,63 ™ -7.70x10 148.4 L8607 6.02x10‘2 91.74
131.2 325.5 1.74 2,18 ¢ -5.,11 ™ 140.8 1.057 3.23 " 75.48
181.0 331.7 1.36 1.75 ¢ -3.36 ¢ 132.1 1.186 1.66 ™ 63.84
2€2.6 337.4 1.00 1.30 -2,08 ¢ 122.3 1.155 7.79x10=3 55,66
375.3 341.6 . 735 9.44x10& =1.36 ¥ 114.1 .9893 3,76 ™ 51.25
400.5 344.4 .569 6.47 -8.32x10“3 108.7 .7366 2,10 " 49.21
664,85 3546.2 .435 4,404 -4,29 " 104.3 .5309 1.18 " 47.99
£54.¢ 347.4 .331 3.04 " -2.21 " 100.9 L3747 6.66x10-4 47.28
1177 348.2 251 2.08 " -1.14 " 98.2 L2610 3,75 ™ 46,86
1547 348.7 .189 1,42 F -5.87x10"a 96.2 L1804 2,11 " 46,61
2086 349.1 .143 9.73x103 -3,01 " 94.7 1241 1.19 46 .47

6¢
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Figure 3

The temperature, radial and azimuthal velocities obtained for

Solution #1 of the onme-fluid model, as a function of heliccentric

distance..
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Figure 4

The plasma 8 and magnetic field angle ¢ as a function of helio=-

centric distance for Wolution #l, one-fluid model,
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Figure 5

The temperature, radial and azimuthal velocities obtained for

Solution #2 of the one-fluid model, as a function of heliacentric

distance.w
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Figure 6

The plasma B and magnetic field angle ¢ as a function of helio-

centric distance for Solution #2, one-fluid model,
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The radial component of the expansion velocity iz continucus
across the critical points and increases monotonically from a few tens
of Km/sec. near the sun, to a few hundred Km/sec. at large heliocentric
distances. Solution #2 gives 334 Km/sec. at 1 A.U., in good agreement
with observations during quiet times.

The azimuthai velocity component first increases with increasing
distance froﬁ the sun's surface due to the tendency of the plasma to
corotate with the sun. It reaches a maximum around 101'o and then decreases
monotonically with increasing distance. The predicted azimuthal velocity
"at the Earth's orbit for Solution #2 is 1.19 Km/sec., which is of the
same magnitude as the azimuthal velocities predicted by Weber and Davis,
Urch and Wolff et al.

This|va1ue of u disagrees withrreported observations of 6-10 Km/sec
for the azimuthal speed; nevertheless the uncertainty in these measurement:
is of the same order of magnitude and further work in this area is
necessary to resolve this conflict.

Weber and ﬁavié have shown that the characteristic deceleration
time for the sun due to the torque produced by the magnetic field and
‘angular momentum loss can be written as

T=-Jo/ el e .a’f_lkﬂ (I1.5.1)

If we take %%? = -1.25x1012gm e.et:-1 we obtain T=7.9K109 years as the
characteristic deceleration time for Solution #2. As expected this value
.agrees with previous results obtained by other authors,

Figure 7 shows the variation of the radial Alfven Mach mumber as a

function of heliocentric distance, Near the sun A?=MA—2 is very large
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Figure 7

u

The radial Alfven Mach number th EE J4mm as a function of
Pr

heliocentric distance. Near the sun MA <<] reducing the effect of the

magnetic field upon the radial component of the expansion velocity.
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reducing the effect of the magnetic field upon the radial expansion
velocity as discussed in 1I.3. The magnetic field angle ¢ given in
Figures &4 and 6 remains well behaved in the vicinity of the sun and tends
to 180° for r=Tg. A plot of the characteristic Alfven speed B/JZFE for
Solution #2 is given in Figure 8, while Figure 9 shows the radial
component of.VA.

The predicted temperatures at 1 AU, are 1.04x105°K for Solution #1
and 1.54x10%9K for Solution #2, while the plasma p values are .89 and 1.19
respectively, in good agreement with observations, Table IV summarizes
.the flow conditions predicted by this medel at 1 AU, and for reference
we have included the predictions of previous one-fluid models as reviewed
by Hundhausen (1972).
The values of U, Uy T, gz, B, ¢, M and V calculated, are
independent of the value assigned to the constant K in (1I1.2.57). To

determine the particle number density, heat flux, magnetic field, kinetic

and total energy flux, we must assign a value to K. From (I1.2.55) it

(04'7'3 "ot ’S”) (11.5.2)
205 K Up,

follows that

(I1.5.3)

KT —72de
q“_ 1T da

and

B= <4T|'mn3yu.) ‘llr ;_? cosg{ (II.5.%4)

The magnetic and kinetic energy flows per steradian are respectively

sz(m.Sm# T Sm#“’s#) and mn Ue 1 ( (11.5.5)

We find that it is not possible to assign & unique value to K that will

L
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Figure 8

The characteristic Alfven velocity V,= B//4mmn, as a funetion

of heliocentric distance for Solution #2, one-fluid model.
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g . Figure 9

The radial component of the characteristic Alfven velocity, VAR

as a function of heliocentric distance for Solutien #2, one-fluid

1

model.
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TABLE IV

PREDICTED FLO“ CONDITIONS AT 1 A,U, - ONE-FLUID MODELS

Sol. #1 Sol, #2 Whang Urch Whang & Noble & Weber &
' : (1971) (1969)  Chang (1965) Scarf (1963) (Davis (1967)
Radial velocity 317.6 334.4 302 371 260 352 ~400
(Km/sec.)
Azimuthal velocity 1.02 1.19 - 623 - - 1.0
(Km/sec,)
Temperature 1.06x10°  1.54x10°  1.5x10°  4.39x10°  1.6x10° 2.77x10°  ° 2x10°
(deg. K)
Magnetic field. 126.2 127.7 129.5 - - - 135°
angle (deg.)
Plasma Beta .890 1.19 1.58 - - - -

9¢
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give reasonable values for these quantities at 1 A.U. and in the vicinity
of the sun simultaneously. This would imply that the assumption K=const.
is not valid throughout the region considered. 1In Figure 10 we show the

denéity and magnetic field intensity obtained from Solution #2 for two

3.3y Analogous

extreme values of K='8x10'8 and K=6x10_7(ergs cm-lsecﬁldeg
results are given in Figure 11 for the thermal energy flux q.

The best agreement with observations at 1 A.,U. is obtained when
we choose K=1.0x10-7(ergs cm-lsec-ldeg-a's). Table V shows the values
obtained for these quantities at 1 AU, for different values of K between
‘the two extreme values considered above,

In Figures 12 and 13 we have plotted the kinetic and magnetic
energy fluxes per steradian as functions of heliocentric distance for
K=8x10-8 ergs cm_lsec-ldeg-B'S. It is immediately apparent that only a
small amount of magnetic field energy is converted into kinetic energy,
in contrast to the results obtained by Whang. The-principal factor
responsible for the 17% increase in radial flow speed obtained by Whang
is the introduction of magnetic field inhibited heat conduction in the
energy equation. Thermal energy piles up behind the obstructiom
represented by the field, raising the temperature and increasing the
_velocity, (Parker, 1971; Hundhausen, 1972).

The value of the constant K which gives best agreement with obser-
vations at 1 A.U. is 0.16 of the classical Spitzer's value for ionized
hydrogen. Recent observations of radio-star scintillations indicate that

the solar wind is highly turbulent, (Jokipii, 1972). These fluctuations

and waves are an essential aspect of the solar wind and affect the transpo:
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Figure 10

The particle number density and magnetic field intensity as a

function of a heliocentric distance, for K=8x10_8 and 6x10-7ergs em

-1 -3.5
e

sec “deg . Solution #2, cne~fluid model.

LY
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Figure 11

The thermal energy flux Q, as & function of heliocentric distance
-1, -=3.5
eg

for K=8x10-8 and 6x10-7ergs cmflsec d Solution #2, one-fluid

1

modei.



10

trau 103

102

0

| | 1 | | | i 1 1 I 1
) < © ) aﬂu

10° |-
(e}
I =12

1 o w _m

(.99s Neo\wma, XN13 LVv3H -



Y TABLE V

TOTAL EMERGY FLUX, PARTICLE DENSITY. MAGNETIC FIELD
INTENSITY AND HEAT FLUX PREDICTET BY SOLITION #2 AT 1A, U.

K x_107 F x 10723 Bir> n B q
{ergs cm’lsec'ldeg'B's) (ergs sec'lsteradfl) {ergs cnfesec'l) (cm‘s) (gammas) (ergs cmfesec'l)

6.00 33.0 1.487 35.4  17.8 462 x 1072
5.00 27.5 1.239 29.5  16.2 ~  3x84 x 1077
4.00 22,0 0.991 23.6  14.5 3.08 x 1072
3,00 16.5 0.743 17.7 12.6 2.30 x 1072
1.60 - 8.25 0.371 8.85 8.9 1.15 x 1072
1.40 .70 0.347 8.26 8.6 1.07 x 1072
1.20 6.60 0.297 7.08 7.9 9.25 x 107>
1.00 5.50 0.247 5,90 7.2 7.71 x 107°

-3

0.80 4,40 0.198 4.72 6.5 6.16 x 10

c9
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Figure 12

n
The kinetic energy flux per steradian, KEF=% mnurrz(gg), as a

function of .heliccentric distance for K=8x10-8efgs cm-lsec_ldeg-3'5.

Solution #2, one-fluid model.
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Figure 13

The magnetic field energy flux per steradian,

r2B2

41

MEF = (ur sin?¢ -u sin @ cos @)

as a function of heliocentric distance for K=8x10_aergs cm-lsec-ldeg-3'5

4

The amount of magnetic field energy converted into kinetic energy is a

small fraction of the total emergy flux.
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coefficients in the plasma reducing the effective heat conductivity along
the.magnetic field lines and increasing the energy exchange rate between
electrons and protons, (Hollweg, 1972; Hollweg and Jokipii, 1972; Perkins,
1973). Perkins has argued that Spitzer's conductivity is inapplicable

in the region where the solar wind becomes collisionless and a reduced
value should be used instead, The results cobtained from the present
model give sﬁpport to these hypotheses since the choice of K=6x10-7 near
the sun, corresponding approximately to Spitzer's value, leads to coronal
densities in better agreement with observations (see Figure 10), while
the reduced value K.=lx1_0-7 gives agreement at 1 AU, where the wind is
essentially collisionless. These results imply the existence of two
characteristic regions in the expansion process, with a transitional
region in bgtween. We shall consider these concepts in greater detail

in the following chapter and develop a two-region, two-fluid model of

the solar wind.
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I1I. THE EFFECT OF THE PROTON THERMAL ANISOTROPY

ON THE ANGULAR MOTION OF THE SOLAR WIND

TII.1 Introduction to the Problem and Basic Assumptions

The particle velocity distribution function for a uniform,
collisionless plasma in equilibriwn in the presence of a magnetic field,

possesses cylindrical symmetry around the field direction and is of the

form

-FCS):-F(Cu,CJ.) (I1I.1.1) -

where C" and (}.L denote the intrinsic velocity components parallel and

perpendicular to the magnetic field, The second moments of (ITL.l.1)

give the parallel and perpendicular pressures and are related to £ by
Pu = ij:‘FdE

and ' \ (II1.1.2)
P = j;gléé=4?Cls

In addition, the parallel and perpendicular temperatﬁres ;re defined by

a |<T|'l = P“ 3 nkTP = FJ. (III.1.3)

and the total plasma temperature is
¢ T= ( 2T +Tuw)/3 (I1I.1.4)

The third moments of I give the conduction heat fluxes

fu = [Felfe

- lS
and (II; 1.3)

3 = f mCse, fde

2

wh' zh are identically zero if f is Maxwellian in form. In a frame of

reference with its 2 direction aligned with the magnetic field, the
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pressure tensor P will be giﬁen by

P=p. 1 I +(pip) e (111.1.6)
whe;e I denotes the unit tensor. Solar wind observations 1nd1cate that
in the vicinity of the Earth's orbit the proton pressure tensor is aniso-
tropic with P">PL and furthermore q"#qlfo (Hundhausen, 1972), implying
that f deviates from the Maxwellian form and the plasma is not in a
state of thermal equilibrium, Figure 14 shows the contour map of a
typical proton velocity distribution function reconstructed from obser-
vational data (Hundhausen, 1970).

The pressure tensor P given by (I1I.1.6) may be used in the
formulation of a more complete solar wind model if the rates of change of
P“ and Pl are known. Chew, Goldberger and Low (1956) obtained expressions
for the second moments of the Vlasov equation under the assumptions
described above which may be written as follows

*Ta "
Dt‘ Bn“) K e._v(ﬂ )F

and (111.1.7)

D 'll)_{___e‘. ('-'?u-

Since these expressions involve heat flux terms the general set
of magnetohydrodynamic equations cannot be closed in terms of known
moments of the velocity distribution function and thus twe additional
equations are required to determine q“ and q,-

Whang (1971d) showed that the proton velocity distribution function

in the solar wind could be approximated by

-F.-.-[|+, <y h(c,,,c.,_)J_F" (I11.1.8)
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Figure 14

Contour map of the proton velocity distribution function at 1 AU,
as reconstructed from observational data, (Hundhausen, 1970)., The Z-axis

corresponds to the direction of the magnetic field and points away from

the sun.,
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where fo ig the bi-Maxwellian distribution function

_Fo = (n/TrS}zA:A“) exp ¢ g:'_ gf) (II1.1.9)

An= (Qk'ﬂn/m)'h ; A= (2kTi/m) e (I11.1.10)

with

and )
. - I1.1.11
g“ = CI‘/A " 2 g_l_ = C_L/A_‘_ (I1I1 )
These are the dimensionless forms of the intrinsic velocity components;
the dimensionless heat fluxes 7 and 7 are defined by

.1 —?../An (nkTu/f2) ; 3’.:. = QH_/A" nkT. (1I1.1.12)

fhe function h is an even functiom of C" and C‘._L and in this neotation it

takee the form o, ”

h(E, 5 =¥ (285,-1)+2% (5.-1) (111.1.13)
Using this form of the distribution function it is possible to compute
the third and fourth moments of the Vlasov equation in térms of lower
moments, closing the system of MAD equations. Whang has obtainéd the

following expre551ons

ﬁ(__n%'_') 3k Bzel CTu .LVB BT;IV‘c)

g
2mn (1I1.1.14)

%( )ﬂmnE} (T 2vp -BTaVT)

Equations (III.l.7) and (I1I.1.14) thus govern the variation of the proton
temperaturesﬂT“ and TL, and proton heat fluxes q“ and q, in a collision-
less heat conducting plasma.

Near the sun, the energy exchange rate between electrons and protons
is high and the solar wind behaves as a thermally isotropic one-fluid,

that is, the electron temperature equals the proton temperature and the
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anisotropy ratio is unity. As we proceed away from the sun the plasma
density decreases and the interaction weakens causing the electron and
proton temperatures to become different and anisotropic due to the presence

‘ of the magnetic field., FEarly models of the solar wind (Sturrock and
Hartle, 1966: Hartle and Sturrock, 1968) which attempted to incorporate
this effect by means of classical plasma theory based on binary Coulomb
collisions failed to predict anisotropy and the observed solar wind
conditions at 1 A.U. Due to the weak interaction with electrons, the
_protons cool off too rapidly leading to an adiabatic expansion at small
heliocentric distances. ‘As a consequence the predicted proton temperature
at 1 AU, is low while the electron temperature is high leading to values
of the conduction heat flux‘much higher than observed;

Since -then several mechanisms have been proposed to explain proton
heating beyond the region in which classical collisions play a dominant
role. They include collisionless heating by dissipation of hydromagnetic
waves (Barnes, 1968, 1969; Barnes et al,, 1971; Hung and Barnes, 1973),
viscosity (Wolff et'al., 1971), coronal Alfven waves (Belcher, 1971); MHD -

gpulses (Papadopoulos, 1973) and electrostatic ion cyclotron waves (Toichi,
1971). Perkins (1373), on fhe basis of radio-star scintillation observations
of the turbulent sclar wind, has propqsed that magnetoacoustic plasma
instabilities are responsible for the increased energy exchange réte

btetween electrons and protons. At this time the exact nature of the
interaction is not known but we may consider an inner region in which
the proton and electron temperatures are equal and isotropic, and an

outer region in which the protons become cellisionless and their temperature
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anisotropic. In between there is a tramsition region in which the protons
are neither collisionless nor isotropic or one-fluid. Figure 15 helps tol
jllustrate these concepts; the dashed lines represent.expected solar wind
conditions as deduced from observations at 1 A.,U., while the solid lines
represent results obtained from the two-fluid models indicated,
| The two-region concept has evolved from the theoretical work of
Hollweg (1970, 1971), Burlaga (1971), Leer and Holzer (1972),7Chen et al.
(1972) and other authors. Whang (1972) has incorporated the two-region
.approach into a two-fluid model of the solar wind. This model,rusing the
proton distribution function (III.l.7), provides macroscopiclas well as
microscopic informatioﬁ about selar wind protons; the results show good
agreement with experimental observations.
The proton thermal anisotropy is of particular importance in the
study of the éolar wind angular momentum since the pressure tensor P
given by (111.1.6) will give rise to additional azimuthal forces not con-
sidered in Chapter II of this work., Weber and Davis (1970) have included
these forces, as well as viscosity, in their analysis of the azimuthAI
mmotion, in an effort to explain the discrepancy between observed and
predicted azimuthal velocities at 1 A.U. Nevertheless, the form of
(P“-P¢) used in their calculations‘zés a simple iﬁterpolation fgrmula
Fu- Pa = £ Pu Bu/az (I11.1.15)
in v aich the parameter ¢ is varied between ¢ = 1 at 1 AU, and ¢ = O near
the sun and P", Pl represent the total thermal preésure {electron and
proton) coﬁponeﬁts parallel and pérp;ndicular to the magnetic field.

Solar wind observations (Montgomery, 1971) reveal that the electron
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Figure 15

The two regions considered in the two-fluid model of the solar
wind. The dashed lines represent expected solar wind conditions as
deduced from observations at 1 A,U., while the solid lines represent

results obtained from previous two-fluid models,
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thermal anisotropy at 1 A.U. is small, with (P”/Pl):i; consequeﬁtly, the
form (I11.1.15)) is expected to overestimate electron thermal anisotropy
effects and lead to larger azimthal velocities at the earth's orbit.

In the following sections we shall expand the model developed in
Chapter II to include the effects of the proton thermal anisotropy in ﬁhe
fashion described by Whang. The electrons will be considered isotropic
throughout and treated in the same way as in Chapter II, In the imner
region we will use the equations developed in Sections II.2 and II.3 to
obtain a one-fluid solution for the model up to a transition point where
the protons will be assumed to become collisionless. From this point out,
we will use the equations developed below to obtain a two-fluid solution
in which the proton temperature becomes anisotropic beyond the transition
point and into the outer regionm. The general assumptions made in II.1
regarding the interplanetary magnetic field, steady state and fluid

behavior of the solar wind, apply without modification to this case.

1II.2 Governing Equations for the Quter Region

The equations of mass, momentum and energy conservation given in
I"Chapter II have to be expanded to incorporate the anisotropic.proton
pressure tensor g given by (III.1.6), tﬁe second moment equations of
‘Chew-Goldberger-Low (I11.1.7) and the third moﬁent eduations of Whang
(ITI.1.14), The general forms (I11.2.1), (II.E.E) and (I1.2.3) are valid
and we need only consider those terms involving pressure, temperature
and heat flux. |

The velocity u and magnetic field B will be expressed as in (II.Z2.1l)
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and (11.2.12) thus Maxwell's equations apply without modificatiom. Equation

(III.1.6) will represent the proton pressure tensor and may be written as

fr = Pa 1+ % <Pu"]°—l) (111.2.1)

Furthermore, the force component due to the proton pressure is given by

(Appeﬁdix B)

- VF (Fn E&)CB v)e+ (B)&V(P‘;P"'

=L
({I11.2.2)
The total thermal pressure tensor for our model is then

P_ T T, BB - 111.2.3
=“‘<nke+P-L)-=+ ﬁ(f’ﬂ F’LJ ( )
where Te denotes the isotropic electron temperature. The radial and

azimuthal components of the pressure force are thus given by

(V._f)'_ - ’a (nk ‘e_).{. ‘_’nnd 2 (nk ] 1)4, caS #—aCHk fe )+

nkc-ﬁt—'ﬁ.‘) 47 .2 2nkCu-TL) =2 2
1) (4eostf - cchf-o)- 2k o'y B 2Bu

(111.2.4)

(thfzn = c‘sfé55f3££§}[bkﬂf1&,1:i]4 ﬁiﬁ:g}fzégcgsyﬁsjnyg

g(|+4¢°s¢) + 2‘; a,a—arf-’ nk CTi-T, )cos‘2¢’ (III.2.5)

The corresponding components of the equation of motion are obtained by
introducing (III.2.4) and (III.2.5) in (II.2.2) and making use of Maxwell's

equations., The results are respectively

a_rz%‘.‘{ur-.'_‘. ET Bin qﬂ(l-l-i’cos @)+ T C°595("25“’ #)*TJ 4T!'mn}

_:_{ kr(ang vt T acos a_)+ _I' 2(TeT) + G- To) i B (19 2cash)]
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. SHMe ('au..,_ W [‘zkr('ﬁa-u)c 5?45 n?‘ erBr]+ u‘:_}

or r mWr 4Tmnde

(III.2.6)

31!“[1,"' k —
+ X (T, T, )Cos2¢p Cosed ~ ]
r m(' .1) # 96 n

41'} ?l“:r[’_“‘ﬁ@;,_n) g:nzigcos;s_f;:;} ¥ cosdsind 2 (1am)

- .|‘5.<E) Sin 24;5 a-oszgi.. ?..."t_"."-?é—" (111.2.7)
m r
We observe in (III.2.7) that the anisotropic proton pressure introduces
additional terms in the azimuthal part of the momentum equation and it
cannot be integrated directly as in Chapter II. These terms will tend
to increase the total angular momentum in the solar wind.
We must now find expressions for the terms in the energy equation

that involve the new form of the pressure tensor, thus we calculate

V. (P u) L ;3 ?‘i‘ur nkCT-rh.)-*Casz;{nk('ﬂ:— J.)_] (III.2.8)

4 M, c::sgf s.’n# n ’<C-ru ~Ta) }
i
For the heat flux term ¢.Q, we have

v-Q = !‘z 81' I‘g,.. (111.2.9)
where 9, is now composed of three terms: the radizl component of the
electron heat flux and the radial components of the parallel and perpen-
dicular proton heat fluxes. In a collisionless plasma in the presence
of a magnetic field, the proton heat flux is

B |
%I’ = :é‘ C‘#u"‘ff.;)r € C?.n‘lh) (111.2.10)

For the electrons we consider the inhibited conduction heat flux
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2) DTe '
= - Kpcospp 22 .2.11
(?e)r o Co5 P S (111.2.11)
where ¢ is defined as in Figure 1b, and it follows that
= eosSph(—~ cos e I1T.2.12
fir fSC Ke ?SEF +q-u "'ﬁ-.l.) ( )
with /
; 5
Ke = KTe 2 ' (111.2.13)

Introducing these results in the energy equation, we obtain after one

integration

e [ (6T 44T, g‘,)_,,m,.,,;@-. T4 Bt Lol méﬂe] ,

(I11.2.14)
2 . B
Nyt [::os singd k(=T -B‘U._I] t'cos ( cos b Ole + )
+—F
’6 ?S )4Tl'n ?g e ;S *3"?"‘
where F is the total energy flux per steradian. We must now obtain
expressions for T”, TL, q“ and q-L from the second moment equations of
Chew-Goldberger-Low and third moment equations of Whang. Under the

assumptions made for the model under study, these equations take the

respective forms

l.lr 9 (ln .'.'.'..E'_ _2Br @ (9 (111.2.15)
nkTy 2r\ B '
o
41:-.-. In 12 _-. = - Br 2_(3-‘ (111.2.16)
( nkTi2or J |

and

2 |
uf_a_ B ") = 8k’ 6 B ('r'lj_ %?_ BTu '3;;_) (111.2.17)
n

or 2mn?
‘UAr ..'a;.( 3y = ﬂ.ﬁ('r‘f&% - BTy 9'11) (111.2.18)
PrN n? mnp? °r e

wit!.
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_ (111.2.19)
L 2B ‘2°°°d_s H(Laur L), mé@ﬁ(a@_?_w
B or Ur or Ur or

In Chapter II we have obtained from Maxwell's equations and conditions

in the sun's vicinity

F(4rBuw - Uy By) = const. =~ Q2578 (111.2.20)
hence
fang = Uy _._Q) (III.2.21)
'u,- r

These equations may now be expressed in dimensionless form by introducing
the dimensionless variables and parameters defined in Chapter II, except

for the dimensionless temperatures which in this case are given by

O =Te/1 » & =Tn/Ta 5 0, =T/T3 (I11.2.22)
and dimensionless heat fluxes
Q= ?u/nakTa‘Lq-a s Q= f}a-/"ak'gurg (111.2.23)
The parameter ¢ is now given by
: "(el = 20, U, l'il(/')(es cos-‘;'ﬁ; (111.2.24)
The system of dimensionless equations may be expressed in the compact
form (171.2.25)
dV a; d(..\’_‘.').;.d;ade"-l-dmde-‘-J-d:s ég-‘-'+d:.c-dﬂ.*+d., dee =g
dz d2 d=

where the coefficients a.j are given by the following expressions:

a, = svi .. [G_Lsm B (142cash )+ e,.cgs%(l- zsm;{)-u- Ge - ‘§/4V4and/2"

(I11.2.26)

Qg =~ 02 [-%(e..-e;)sin'-’-sﬂcos?é —§/HV+°“95/22_1 (111.2.27)

Az = Vcos% /?_ 7 A4 o= \/51'5'1‘2;!‘/2 (111.2.28)
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. ‘ .2 2 2
g = __z\f[e¢+e_L4-é'-Ce.wG_,,)smgS(l-P?CoSﬁ)- 3.;_54-55 WZJ (I11.2.30)
These coefficlents a'lj’ (j=1,8) correspond to the radial part of the

equation of motion. The coefficients for the azimuthal part, a, 21 (j=1,8)

are
Az =  (8u-8.) 5in2f cosd ~(Epviand)/z* (111.2.31)
Gop = - 92 [gv?.. .zl(e,,-e_t) cos2¢ cos.:;s- \3/1\//223 (I11.2.32)
dzg = - (Vcos.;{sin é)/z (111.2.33)

A4 = (Vcosgfal‘ngf)/z ; Qas =26 =q27 =1r1.2.34)

Azg = (V/ZZ)(511-9$) sin2g “52554- 258 wv?/z (111.2.-35)

The equations of Chew, Goldberger and Low may be combined with the third
¢

moment equations of Whang to reduce the number of coefficients to be
calculated, The modified third moment equations coefficients are used

in (I11.2.25) and may be written as

aal ..(2:0.5#/\(){9,, Gﬂﬂ‘(l 36_,_5.:1;(/4 Evz) 42?@: C°$¢1 (II1.2.36)

as:z =C52/V)°°5‘i£5i"¢[8,. (1466, oh/4EV?) _782161,40_595] (III.2.3.7)
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) 433 = })- (Y- casz¢/4'gvz 4 da4 =qas = A3g =Qa7 =90 (111.2.38)

a?’,.:(zeu [364@1 dgg:cosqi) .3;,,“’-95] +2ZcasdsinBQu  (111.3.39)

Qs = (%—') 2 %osh (4¢84 (%‘.) sinf [GLanF 28V -l] (I11.2.40)
a4z = (.3\.;) cosdsing [O,,j’éas;l +8, (-6, 005% f25v*) ] (111.2.41)
Ay =0 ;444 = (Gu P [28F)~1 5 Qg =A4g = Ca7 =0 (111.2.42)

Asg = Zcosﬁcmszd 3) +(a")<I+CoS¢Xl 8, cos #/ZEV")
(II1.2.43)
The coefficients correspondlng to the Chew-Goldberger-Low equatlons are

given by
= (2Zeosd v)(csd Ou 4 2@ smff) (I11.2.44)
’ dgz = (-—é\-,g) <o$¢ Sl'n¢ (9“—222&05;5@1!) (II1.2.45)
A5s = | ; GQse = O ' (II1.2.46)

ass = 2Peosd
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dgs= As7r = O H

asg = - (;)[sh% 6, +£65 ¢(t+¢as’¢) Q..?"_] (II1.2.47)
Sin'd | 2 (111.2.48)
dal =( " )(G_L-F-?CO‘E'QSQ_L) . 2,
2 = - (é\;z;) singeosd (8, +2%0sd D) (II1.2.49)
4¢3 =0 ; ded =l 1 dgs =0
z hY
Qgp = 2 cosgf (1I1.2.50)
7 = ©

aas = (%)(I-Lcoﬁé) (8, +2%ssd QL) (111.2.51)

e remaining coefficients a_7j, are associated with the energy equation

d are given by 2 5/2
2
2= Arz 2473 204 =15 2976 =0 ;77 =28 cos'g (111.2.52)

13 = %e coS*f ., [é(vﬁ-é’zw") +.‘.4L (56.+46, + 6,,) +

o5g (0u-0.) + Y cosgeingd (8- ) -
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Eubiland 05 HE + éﬁé{q,,-; qa_l.) (111.2.53)
z =1 2

The system of equations of (III1.2.25) has to be solved in the outer region
of‘the model to determine the unknown variables V, ee’ au, GL’ Q“ and QL'
In the inner region ee=e"=el and the equations reduce to those obtained
in Chapter II except for the CGL and third moment equations which were
not considered. We shall find that the transition point from the inner
to the outer regions must be chosen such that it lies beyond the three
critical points previously discussed. Hence, we need not concern ourselves
with singularities in the differential equations since they occur outside

of the region for which the system (III,2.25) is assumed valid.

II1.3 Numerical Solutions

We found in Chapter II that the solutions for V(Z) and §(Z) depend
upon five dimensionless parameters ¢3, 53, 7, { and H., For a given set
of values assigned to these parameters the solutions in the inner region
are found in the same manner as in the one-fluid model up to the boundary
point between the inmer and outer regions (Z=Za=r&/r3), with Z,>1. At the

4

dtransition point all quantities are continuous and we must specify thé
Vva;ue of Q" and Ql in order to obtain a sclution to the system (III.2.25)
in the outer region.

We shall assume that the proton heat flux (Q“+QL) at the transition
point is that flux available at thisrradius from magnetic field inhibited

heat conduction by protons as given by the one-fluid solution for the immer

region, DBraginskii (1965) gives for the electron and proton heat conduction

coefficients respectively



86

Yue = 3le e le Ti./me (I1I.3.1)
= T m
'KuP_ 3.9 nr f'Tf/ P (I11.3.2)
where it is assumed that prp>>l and Te? Tp are the collision times given
by 3
Te = 3_5){1041-0 A/C’*/m) Ng (I11.3.3)
%& )
Tp = 3.0% 10@-’} /(1/|0) Np (111.3.4)

and furthermore % , the Coulomb logarithm is taken as 24. if Te=Tp,

it follows that for the one-fluid model

X = 1@3( | + ©.04074) (111.3.5)
" and ‘
AL = |.04o704 K¢ (1II1.3.6)

From equation (II1.1.12) we obtain for the dimensionless heat fluxes Q“

Qo = f"e" But (111.3.7)
ZzvziV g

| _ %0 [eu |
) Q, = vm YV E | o (111.3.8)

hence at the transition point Z=Z

. |
%)4 = (%/2 74.14 | (1I1.3.9)

Introducing (II1.3.5) into (I1.2.67) and requiring that the total thermal

and Q.L A

en:rgy flux be continuous across Z,, we obtain °

4
5 |
(Qn* QJ-)4 = 01823 Oatzo5da (t_j_é X

vccosf"ﬁa

- (II1.3.10)

and
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2
ty .Y - 07828 V4 24 JE' 84 cosda é@ (111.3.11)
<05y

Thus, once a solution for the inner region is obtained we need only
spec1fy the ratio y /7 at the boundary Z=Z4 to obtain the solution in
the outer region. It is convenient therefore to lntroduce an additional
parameter defined by

= (Xu /3'.1.)&24 (111.3.12)

and the solutions for V, e ’ e . e . Q and Q take the general form

'F 'FQ% Pa, fﬁi;f Y, H nZ) (1I1.3.13)

Thé requirement that the solutions extend from the sun's surface to large

heliocentric distances with physically meaningful values, restricts our
freedom to assign arbitrary values to the parameters in (III.3.13). As
discussed in Chapter IT, for any given values of H, 83 and ¢3, £ is
adjusted to obtain a solution passing through the inner critical point
while ¥ isldetermined from the condition that the thermal energy flux at
infinity i; assumed zero, Thus we may write (III1.3.13) as

i = -F(Z, Pa y P, Hy %) (111.3.14)_

that is, the values obtained for the quantities in a given model depend
¥

upon four independent parameters rather than the six preﬁiously indicated.

From (III1.3.11) and (III.3.12) it follows that

.07828 Vi Z4VE 04 cosdy (
er N/2) o co5%dy dz /s

The numerical integration procedure “‘used to obtain solutions to the system

(I11.3.15)

L

(I1I.2.25) is the same as the one described in Chapter II. The system of

seven simultaneous non-linear differential equations is written in terms

of the independent variable X=Z“1 and the results are given in Appendix C.
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For large Z, asymptotic series solutions may be found by introducing

the formal asymptotic expansions of Whang (1972) in the system (I11.2.25).

3
These forms are given by (E =Z I )

V= Vo (14 s_?*g'cu-&j)
e = A&t (14 ?C‘zj&j)
u=A; 86(14- g Csj £5)

(I11.3.16)

6.

n

A483(|+§C4J&j)
.Q" = A "(1+ ics_jé"')

| -
A = Aut(1+ 24 &)

In addition to the above we introduce .

' W= A0+ s ¢ e’ ) (1I1.3.17)

g : 7 \ 4 |
as the asymptotic form for the azimuthal dimensionless velocity., For
large Z we may approximate ‘ ‘ .

tangd & .5 g ?® (I11.3.18)
v
W' en these forms and their derivatives are introduced in (I11.2.25) and

the coefficients of every power of ¢ are set equal to zero, we obtain.

2 -
Vm‘z‘-&/zf;mﬁ = O

and the non-zero ceefficients Cij for §=1,8 are

(111.3.19)
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Cio= (¥E-AQ)/EP 5 €n=-5ha J4EP
cis = (444Ci-Az- 54, C2z )/ 48P
Cia =(AAs Cu~5A3Ca) /48P ; Cis = ~BAyCaq JAEP
Cle = <I/4§;P) [. B4, Cas - 4As Caot Ve /) (Be- Aa Vo 2]
iz = (1)) ( !;E'-";-A—a- ~ AaCag - BA2C26 )
Z P

cig = ! /E?)( “C"Aq - A4Cqs - 5‘4::"” )

(II1I.3.20a)

Caz = (1fA) 2¢10 (A4 +ES Clo- 3E)
Cz3 = ("AM;)[C.; (6Aa +14ESClo- 6¥E)-AzCre ]
Cas = Cu (14 425511 /3h.)

| cos = (sa)[2an i+ (2¥a/E) (Y2 b _38.) 4

2C (6§5Cl5+ 3R;Cz2 - 2440 —bAa)— 4>3§C\31
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Caa = (tfan)[- Thacar + zec,o(""“ Aa  Escuy A2l ),

C;[‘(BAB—‘-'ZOESCIB“SAAQCM +8A3Cu>.—c,4 <6~6’§ -I-Aq) 4

4A2c13]
z

quCZBJ- 6.0(44§SC|5 + %?AZCM )_4A7_Cuq +

(111.3.20b)

4C5 (Ae+3¥E)]
(\/m/f)(4As vm)

c43 =.Clo 5 C44 =-Cnu

| 2
Cao = Ca-Ca+ = (2 Ae
. 46 1o g (2 44 25 )

¢

_ ¢47 = chocu-— CM

Cu¥ o Cig

i

Cag

C'S'bl = =S - 5‘4504/4 Eg'lasAs
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2 2
Cep = 2 _As E‘.’.e_..c Crat2C
- Z g;Va As a4 2 %2 (o( 1o+ 53)

Cgg = Cu-Cs = Can

Ced = -2Cio - Af/zg}gvgaﬂe

Cos = -2Cn

Cee = ~2Cio (2€63+ Cro) - 2C13 + AsA4 /4L ¥V Ac
' (I11.3.20c)

Cer = (6C;° Cu /7)-— 2C14 - Cl?cu Cas 7 )

ces = - (BCnCasl2) - 2Cs

Cr3 = ('/M7)(#5:‘°- ;;g)

C74 _— /J,QCu/é\{ooA7
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Cr6 = (5C/SVa By )= CoCas+ (/u./ Vo) +
Aa /25§§A7
Ca7 = (ﬁ gcl‘I/SVm A,)- (661,6-,3/7) ~(8CiCu /1) +

Aﬂ/m SEZA, | (111.3.20d)

»

C78 = (/&Z—‘,’c‘-ns /o Vaolqv) - CuCrq

where as before

and ' (111.3.21)
S = ;—VG,Z—H-I
The coefficients Ai are obtained by successive iterations such that the
numerical and asymptotic solutions join smoothly together at a given value
of Z.
¥ We have obtained two solutions to the system of differential equations
(III.2.25) in the outer region and the corresponding one-fluid solutions
for the inner region. The parameter values used in each case are given in
Table VI, while the computer programs developed for the two-regicn model
ar. given in Appendix D. The one-fluid solutions are obtained by the same
procedure described in Chapter IIL. The transition point from the one:fluid

formulation to the two-fluid description is chosen at 2=3.3 (~0.4 A.U.)

and the ratio of 7“ to 71 () as 4.62 in both cases. These values wers

%
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TABLE VI
Parameters _Solution #3 Solution #4
H 0.8 ~0.85
By 169.8° 169.8°
C . .1948 .1953
By | .200 | .200
Y ‘ .10911 097257
gl 4,62 4,62
Related constants
a ' L4645 .31455
b .96529 .96529
£ 10.035 10.035
§ . .01488 .01538
S ) .98384 .98388
ur3 ' | 263,38 Km/sec. 273.44 Fm/sec.
Uy, 3.92 Km/sec. 4,20 Km/sec.
Ty 25.247 L 26.278 ry
T, B : 24,839 L 25.854 o
ry C 375 1, 3.965 14
T, 5.01x10° 5.41x10°
u, 326.95.Km/sec. 350.45 Km.sec.
o%gaa  ..58753 -.5184 .
v .16748 .17314
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TABLE VI (CONTINUED)

Parameters Solution #3 _ Solucion #4

Asymptotic Solution

r 421 152
a

A, - 6.1625 _ 12.035

A, 17.346 ‘ 20,067

A, .7702 » .8056

A 3.6174 6.9959
. A .03617 .07407

A 2.6172 2,5661
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selected to obtain reasonable agreement with experimental observations

for the proton temperature and anisotropy ratio at 1 A.U.

TIII.4 Results and Physical Interpretations

The results obtained for the radial veloéity v, azimuthal velocity
U, electron_temperature Te, and proton temperatures TPu and Tp_L are
shown in Figure 16 for Solution #3 and Figure 17 for Scolution #4. The
radial velocity solutions are essentially the same obtained previously
for the one-fluid models since similar values of the parameters have been
-used in the calculations,
The azimuthal velocity soluticons for the inner region are of the
same general form as in the one-fluid models; in the outer region the
effect of the proton thermal anisotropy is to increase the azimuthal
speed as shown in the figures, The dashed curves represent the more likely
physicgl situation rather than the abrupt transition predicted by the model.
Since the fluid is assumed inviscid, the increase in azimuthal velocity 1is
due solely te proton thermal anisotropy effects, The predicted azimuthal
'Velocities at 1 AU, are l.44 Km/sec, for Solution #3 and 1.68 Km/sec.
) for Solution #4. These values should be compared with those obtained from
_the one-fluid models in Chapter II, 1,02 Km/sec. and 1.19 Km/sec.
respectively., Thus the increase in azimuthal velocity at 1 A.U. is of
the order of 0.5 Km/sec.
Weber and Davis (1970), in considering the effects of thermal

anisotropy and viscosity in the solar wind, incorporated an ad-hoc

relationship for P which tends to overemphasize the effects of the electron
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Figure 16

The radial and azimuthal velocities, the electron temperature
and parallel arnd perpendicular protonr temperatures obtained for Solution
#3 of the two-fluid model, as a function of heliocentric distance. The
&ashed 1ine; represent a possible physical situation for the azimuthal

velocity in the transitional region.

»
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Figure 17

The radial and azimuthal velocities, the electron temperature
and parallel and perpendicular proton temperatures obtained for Solution
#4 of the two-fluid model, as a function of heliocentric distance. The
dashed curve represents a possible physical situation for the azimuthal

velocity in the transitional region,
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anisotropy upon the angular motion. They obtained uw=6 Km/sec. at 1 A.U,
although this was accomplished assuming a cne-fluid model in which the

viscous stress is greatly emhanced by the elevated proton temperature

. assumed.,

More recently Urch (1972) has given a perturbation solution to the
one-fluid, isotropic ﬁHD equations, which prediects a mean azimuthal
velocity of i-2 Km/sec at 1 A.U., with excursions of ~ +10 Km/sec. caused
by the rotating sector structure ofrthe magnetic field. Since ours is a
steédy state model, we cannot calculate time-dependent effects but the
‘range of azimuthal velocities that can be considered at the ?eference

radius for which physically meaningful solutions can be obtained, is

_ considerably smalier than the excursions indicated by Urch,

We can conclude from the results obtained in this Chapter,‘that the
effects of thermal anisotropies upon the angular motion of the solar wind
are relatively small and cannot increase the predicted azimuthal speed at
1 A.U. to values in agreement with observations.

The temperature profiles obtained for the immer region are analogous
to those calculated for the one-fluid models. In the outer region where
gthe protoﬁ thermal anisotropy is allowed to develop, the ratio of TPH to

TPL increases rapidly with increasing heliocentric distance reaching a

maximum value of ~1.7 at 200 solar radii for both solutions. This ratioe

then decreases monotonically and becomes less than one for large heliocentric

distances, as shown In Figures 18 and 19. The total proton temperature is

given by 'Tr - (QTF.L _;_"['F'ﬂ)/a (I11.4.1)
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Figure 18

The proton thermal anisotropy ratio Tpn/Tp; and the proton to

electron temperature ratio TP/Te as a function of heliocentric distance,

predicted by Solution #3, two-fluid model.
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Figure 19

The proton thermal anisotropy ratio TPHITp and the proton to

electron temperature ratio Tp/'].‘e as a function of heliocentric distance,

predicted by Solution #4, two-fluid model.
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The dashed lines show the probable physical situation rather tham the
jdealization assumed in the medel.
It is of interest Co consider the possibility that wave modes
" associated with plasma instabilities may be excited in the plasma due to
the anisotropic proton pressure. Two particular types of instabilities
warrant consideration: the firehose and mirror instabilities. These
instabilitie; will occur if the following criteria are satisfied,

(Clemmow and Dougherty, 1969; Krall and Trivelpiece, 1973)

. ( -% - ') > (Z/FFJ_) (firehose) (I11.4.2)
( Tpa -l) > ('/Fr.u) (mirrozr) (IIL4.3)
Tpu _

where

Ppa = nk’l}/(e;z/sﬂ) (III.4.4)

and we have neglected the effect of the electrons since they are assumed

isotropic. When the instébility criteria given by these equations are
imposed on our solution we find that {III.4.2) and (III.4.3) are novwhere -
gatisfied and hence no instabilities are expected to occur in the plasma}
the magnetic field pressure is everywhere greater than the proton thermal
¢ ‘

pressure.
The plasma B and magnetic field angle ¢ are given in Figures 20
and 21, where l
2
/6 = nk(Teﬂf-)/ (8%3m) (I11.4.5)
As in the case of TPn and Tpl’ the B curve shows an abrupt slope change
at the boundary between the inner and outer regions caused by the

jidealizations assumed in the model.
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Figure 20

The plasma B and magnetic field angle ¢ as a function of helio-

centric distance, Solution #3, two-fluid model.
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Figure 21

The plasma B and magnetic field angle ¢ as a function of helio-

centric distance. Solution #4, two-fluid model,
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" Flow conditions predicted by the two-region model at 1 A.U, are
summarized in Table VII and compared with results obtained from previous
two-fluid modéis. The quantities show generally good agreement with
quiet-time solar wind observations. Tables VIII and IX give detailed
numerical results fox Solutiéns #3 and #4 in the inner and outer reglons.
These two solutions represent typical limits of observed electron temperature
conditions at 1 A, U.

The quantities obtained and given in the tables, aré independent of
.the value assigned to the thermal conductivity constant K, (see Chapter II).
To compute the density, energy flow and magnetic field intensity we have
chosen K = 1.0x10-7 for Solution #3 and K = 1.!3‘:1(10-7 for Solution #4;
these values of K give results that agree reasonably well with experimental
observations at 1 A.U.
Figures 22-through o5 show the magnetic field intensity, demsity
and heat flukes predicted by the present model as a function df helio~
centric distance. Table X summarizes the values predicted for these
quantities at 1 AU, For completeness, Figures 26 through 29 show the
l;magmatir; field and kinetic energy flows per steradian obtained in each case,
As  in Chapter 1I, we find that the amount of magnefic field energy converted
into kinetic energy is small and has little effect upon the final expansion
velocity.
The microscopic properties of the solution for the protom distribution
function are determined by the values obtained for v , 7 TPH and Tpx'

il
From equations (III.3.7) and (II11.3.8) it follows that



= TARBLE VII .

PREDICTED FLOW CONDITIONS AT 1 A,U. - TWO FLUID MODELS

Sol. #3 Sol #4 Whang Wolff et al., Hartle &
: (1972) (1971) . Sturrock, (1968)
Radial Velocity 317.7 335.2 331 303 250
(Km/sec.)
AZimuthal Velocity 1.44 1.68 - 1.8 -
(Km/sec.)
. 5 5 5 5 3
Electron Temperature 1.34x10 1.98x10 1.52x10 2.03x10 3.5x10
(°K) .
A 5 5
Parallel Proton 9.41x10 1.17x10 1.19x%10 - -
Temperature, (°K)
Perpendicular Proton 6.41::104 6.89x104 5.30x104 .- | -
Temperature, (%K)
4 4 4 b 3
Total Proton Temperature 6.75x10 8.5x10 7.5x10 4,0x10 4.4%10
(°K)
Proton Thermal Anisotropy 1.73 1.70 2,23 - -
Ratio ‘
~ 0 o o o
Magnetic Field Angle 123.3 127.7 130.1 125 -

Plasma P .860 1.09 1.09 - -

I11



NUMERICAL SOLUTION FOR THE INNER REGION

TABLE VIII

SOLUTION #3

r/r vr o 49 4 B
@ (Km/sec.) (Km/sec.) (°r) dz (deg.)

1.274 36.91 2.22 2,51x106 -52,72 179.4 .01879
1.843 66.29 2,80 2,06 ¥ -29,54 179.2 .01801
2,626 98,64 3.34 1.71 ™ -17.15 178.8 .02040
3.733 129.5 3.88 1,42 -10.21 178.3 .02612
5.459 165.7 4.21 1.17 -5.699 177.6 .03573
8.240 198.2 4,47 9.39x10° -3.092 176.4 05454
12.00 223,8 4,49 7.65 -1.772 174.9 ,08318
19.08 250,0 4.22 5,90 ' -0.892 172.1 L1434
28,05 267.9 3.78 4,71 -0.500 168.7 .2265
37.68 279.3 .35 3.94 " -0.321 165.3 3192
50.50 288.9 2,89 3,29 » -0.205 160.9 NAAY:
69,18 297.6 2,40 2,70 " -0.121 155.0 ,6073
84,18 302,2 2,10 2.40 -0.079 150.7 L7301

&

AN



- TABLE VIII (CONTINUED)
NUMERICAL SOLUTION FOR THE OUTER REGION

SOLUTION #3

, u, wy T T | T dpe 8

IO  (Km/sec) (Km/sec) . (0;‘21)‘ (QE;' Qu Q.L (0162) dz (deg) B

61 302.6  2.13  2.37x10° 2.3310° 1.29x1073 5.41x107% 2.38x10° -7.63x107°  150.4  .736
5.6 3091  2.25  1.87 " 1.3 " 5.51x107% 131 " 1,99 " -A9L o 1425 840
2.0 314.3  1.88 1.3 ¥, 7.89x10% 1.75 * o 2.89x1070 1.62 " -3.23 % 133.6 891
9.7 318.4 1.3 B8.46x10% 4.89 ¥ 4,38x107° 6.13x107° 1.27 ", -2.02 % 1243 .843
59 1l 089 5.13 " 3.5 " 1.06 "™ 1.5 " 9.61x107 -1.41 " 116.6 715
63.6  323.3 0.538  2.66 % 2,07 " 1.66x1075 3.15x1075 6.33 " -9.71x10™>  108.9  .512
1700 4.6 0,379  L.57 "y L.5L % 3.65x1000 9.96x107 426 " 478 v 1045 362
123 325.4 0.278  9.10x10° L.12 v, 8,32x107° 3.18 " 2.8 " -2.39 ¥ 101.0  .252
093  325.9 0.208  5.21 " 8.33x10° 1.93 M 1,02 " o 1.9 " -1.20 . 98,3 175
455 6.2 0.157 2.96 " 6.22 w  4,57%107° 3.20x107° 1.32 "™ -6.14x107°  96.29 .12l
93 26,5 0.119  1.68 ", 4,66 ® 1.08 " 1.05 " o 9.00x10° -3.13 * 9474  .084
2977 326.6  0.090  9.53x10° 3.49 " - 2.59x1071) 3.39x1070 6.1& *  -L.60 * o 93.56 .09
231 396.7 0.068 5,38 " 2.62 *  6.20x107'1 1.08 *_ . 419 " -8.20x107°  92.68 .04l
se6  326.8  0.052  1.96 " 1.48 "™ 1.48 "_., 3.48x107 5 2,86 " 42 " 92,01 029

078 326.8 0.039 1.7l " L.47 % 3.55x107F 1,11 % 195 " -2.15 " 91.51 .020

£T1
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TABLE IX

NUMERICAL SOLUTION FOR THE INNER REGION

SOLUTION #4

r/r Yr Yo E ¢ ¢
© (Km/sec) {Km/sec) K dz (deg.) B

1.206 31.88 2.16 2.54106 -52,95 179.5 0,0176
1,665 56.61 £.68 2,15 -31.81 179.3 0.1600
2.301 86.32 3.20 1.83 ¢ ~19.25 179.0 0.0171
3.179 117.8 3.68 1.56 % -11.70 178.6 0.0204
4,409 147.3 4,17 1.32 ¢ - 7.30 178.1 0.0266
6.100 177.0 4,49 1.13 .“5 - 4,50 177.4 0.0360
8.462 203.6 4,71 §.61x10 - 2,78 176.5 0.0511
11,92 228.2 4,77 g.08 " - 1.68 175.1 0.0759
16.92 250,0 4,63 6.76 ™ - 1.01 173.2 0.1l161
24,98 270.6 4,31 5.53 " =-0.577 170.2 0.1880
32.24 282.6 3.92 4,86 " =-0.380 167.7 0.2580
43. 44 294.6 3.46 4.16 «0.240 163.9 0.3720
58.40 304.8 2.97 3.57 ® ~0.149 159.2 0.5280
79.65 313.9 2.46 3. 07 ™ ~0.085 153.0 0.7470
87.62 316.4 2.32 2.95 7 -0.069 150.9 0.8278

VAN



- TABLE IX (CONTINUED)
- NUMERICAL SOLUTICON FOR THE OUTER REGION

SOLUTION #4

r/x, Y 4 oy oL Q Q Te dge ¢ B

89.10 316.9 2.35  2.92x10°  2.86x10°  2.28x100, 9.57x107" 2,93x10°° -6.61x10"°  150.5  .835
122.2 325.0 2.52 226 " 1,63 " 9.22x107" 238 * . 2.5 ¥  -4.28 © 142.8 975
169.6  331.5 2.10 L8 ", 9.66x10" 2,92 " . 5.50x107 2.22 % = -2.85 " 134.0  1.07
239.1  336.8 1.48  9.96x10°  5.88 "  7.40x107 1,23 " . 1,87 "  -1.95 © 124.8  1.08
328.8  340.5 1.00  6.00 "  3.89 "  1.83 "  3.80x10"° 1.55 *  -1.41 117.0  .997
526.6 3444 (550 2.60 % 2.24 % 2031005 4.64x1077 1.07 v, -8.42x107°  107.8  .749
752.9  346.6  .376 1.2 ", 1,52 % 3.62x107) 1,09 " o 7.42x10"  -5.89 ™ 102.7  .535
1002 347.8 280 7.60x10° 1.2 ",  8.34x107°  3.49x107° S.01 * .33 v 99.69  .372
1333 348.7 211 433 % 8.38x10° 1,95 . L.l *_ . 3.40 " -1.67 ", 97.33  .257
1775 349.2 160 2.46 " 6.26 *  4.62x1070  3.55x107° 2.31 *®  -8.51x10 95.52  .178
2363 349.6 21 1,39 M, 469 " L0 Y 103 % 157t w434 © 94,16  .123
3145 349.9 092 7.88x10° 351 v 2.e2x10])) 3.62¢1070 107 v, 201 ¢ 93.13 085
4186 350.0 070 445 % 2066 % 6.27x10700 1.1s v 7.32x10°  -L13 ", 92,35 059
5572 350.2 053 2,51 " 1,98 " 1,50 " 3.69x10711 4,99 ®  -5.81x10 91.77  .040

7416 350.3 .040 l.42 ¢ 1.48 ™ 3.59x10“12 1,17 3.41 ™ -2.98 " 91.33 . .028

1t
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Figure 22

The particle number demsity and magnetic field intensity as a

function of heliocentric distance, for K=1.0x10_7ergs cmnlsec-ldeg-3'5.

Solution #3, two~fluid model,
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Figure 23

The electron conduction heat flux Qe and proton heat fluxes Q“

and Q-L as a function of helioccentric distance, for K=1.0x10-7ergs cm

sec-ldeg-s's. Solution #3, two-fluid model.
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' | Figure 24

The particle number density and magnetic field intensity as a

function of heliocentric distance, for K=1.0x10_7 eYgEs em secﬁldeg-B'5

)

Solution #4, two-fluid model.
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Figure 25

The electron conduction heat flux Qe and proton heat fluxes Q“
and QL as a function of heliocentric distance, for K=1.0x10-7 ergs em

sec_ldeg-3'5 Solution #4, two-fluid model,



/2.3

Q(ergs cm™2 sec™!)

10°

10

10

0

SOLUTION & 4
TWO - FLUID MODEL
K =10 210" Tergs cm™ sec” deg™>®




2y

TABLE X
TOTAL ENERGY FLUX, PARTICLE NUMBER DENSITY, MAGNETIC FIELD INTENSITY AND
HEAT FLUXES PREDICTED BY THE SOLUTIONS AT 1 A.U. FOR K = lz'cl‘.'J“7 {ergs-

'cm_l-secul-deg—3'5).

Solution #3 Solution #4
Fx 10-25_1‘ -1
{ergs-sec ~-sterad ) 5.68 5.54
F/ re - 1
fergs-cm -sec ) _ 0.256 0.249
.0 3
(em 7) 7.31 5.85
B .
(gammas) 7.69 7.24
. e _ _ _ _
(ergs-cm 2_sec l) 4,26x10 3 1.10x10 2
a1 -5 A
(ergs-cm “-sec ) 7.00x10 1.15x10
¢
L - - - -
(ergs-cm 2-sec 1) 1.00x10 3 1.94x10 3
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Figure 26

The kinetic energy flux per steradian, KEF==% mnu r2(g?) as a

function of heliocentric distance, for K=1.0x10‘7 ergs cm-lsec-ldeg—3's.

Solution #3; two~fluid model.
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Figure 27

The magnetic field energy flux per steradian,
r232
4

as a Function of heliocentric distance, for K=1.0x10-7ergs cm-lsec-ldeg

MEF = (u sin2¢ -u sin ¢ cos ¢ )

r

Soliution #3, two~fluid model.

=3.5
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Pigure 28

The kinetic energy flux per steradian as a function of helio-

-1, -3.3
eg

centric distance for K=1.0x1007ergs cmflsec d . Solution #4,

two-fluid model.
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Figure 29

The magnetic field energy flux per steradiarn as a function of

heliocentric distance for K=l.0x10-7ergs cmflsec-ldeg“3'5. Solution #4,

two-£luid model.
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Tu= Zg’ (vz":]g/e,, ) (I11.4.6)
]

U_,_-:..Q_‘: (vz’\/-g/—;n) (I11.4.7)

8,

The values of 7“, 74, Tp" and Tpi obtained for various selected heliocentric
distances are given in Table XI and Figures 30 through 43 show plots of
constant contour maps of the proton distribution function for the parameter
values given in the table, The velocity scale for each map has been
normalized to the local characteristic thermal velocity as determined by
the perpendicular temperature, The axis OZ is parallel to the magnetic
field direction, facing outwards from the sun,

The maximum value of the distriﬁution function is attained at point
0 and the triangle denotes the point in velocity space where the proton
intrinsic vglocity is zero. A comparison of the contour maps obtained
at 1 AU, with that given in Figure 14 shows that the form of the distri-
bution function used in the analysis can adequately represent observed
solar wind properties.
d Whang has given several scale times obtained from the purely radial
model such as deflection time, equipartifion time and expansion time,
Since the general features of the solution affecting the Ealculation of
thesé times are not very different from those obtained by Whang, we shall
not repeat the computation here. The equipartiﬁiou time between’electrons
and protons is much larger thén the expansion scale time implying that
thermal equilibrium between the two fluids cannot be maintained by Coulomb
- interactions glone. We musé resort to the physical phenomena mentioned

previously to explain the increased proton heating within the solar emvelope. =



PARAMFTER VALUES WHICH DETERMINE THE PROTON DISTRIBUTION FUNCTION -

LY

AT SELECTED HELIOCENTRIC DISTANCES

TABLE XI

.

T T T /T Y Y T T T /T
rlr@ 711 7y P pL Py Pl { L Pl pL Pl PL
SOLUTION #3 SOLUTION #4

107 (.5 A.U.)  .378 067  2.02x10° 1.57x10°  1.28  .532 102 2.54x10°  2.06x10° 1.23

214 (1 A.U.) .403 o4s8  9.40x10% s.aoxl0t 1.73 601 0867 1.17x10°  6.89x10” 1.70

408 (2 A.Y.) .384 0437 3.05x10% 5 pax10®  1.33  .616 0819 3.83x10%  2.86x10" 1.33
1112 (5.2 A.U.), 3 3 3 4

Jupiter .269 04b4  5.21x10 8.33x10 625 .578 0831 6.2x10 1.01x10 .613

Saturn ,258 0455  1.54x10 4, 46%10 345 .553 0842 1.89x10 5.48x%10 .345
4066 (19 ALY, 2 a 2 3

Uranus ,256 0463 3xB5x10 2,22x10 173 846 08%  4.,75x10 2.73x10° 174
6420 (30 A.U.), , o 3 2 3

Neptune .256 0466  1.55x10 1.4x10 110 .546 0853 1.90x10 1.73x10 .110

wEL
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Figures 30 through 36

The proton velocity distribution function predicted by Solution
#3 for selected heliocentric distances. The velocity scale has been

normalized to the local characteristic thermal velocity determined by

the perpendicular temperature.
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Figures 37 through 43

The proton velocity distribution function predicted by Sclution
44 for selected heliocentric distances, The velocity scale has been

normalized to the local characteristic thermal velocity determined by

the perpendicular temperature,
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IV, SUMMARY AND CONCLUSIONS

This dissertation has considered the solution of the steady state
magnetohydrodynamic equations governing the supersonic expansion of the
solar corona into interplanetary space under various assumptions regarding.
the form in which prdton thermal energy is carried away from the sun.

The fluid has been assumed to be inviscid and the flow axially
symmetric about the sun's rotation axis.

In Chapter II we have obtained detailed numerical solutions to the
'ong~f1uid formulation of the MAD equations under the assumption that thermal
energy is carried away by heat conduction from a thin shell heat source
located at the base of the corona, The effects of the angular motion of
the solar wind are included in the model as well as a complete descriptionm
of the magnétic field, leading to the existence of three critical points
through which the solution must pass in order to extend from the sun's
surface to large heliocentric distances. The magnefic field is further
assumed to inhibit the flux of thermal energy perpendiculer to the field
lines, leading to an adiabatic expansion at large r with T A'r-4/3.

The values predicted for the flow quantities at 1 A,U. are in good
agreement with quiet-time solar wind observations except for the azimuthal
Vcdmponent of the expansion velocity which is approximately a factor of

five smaller than indicated by reported observations. This discrepancy
méy be due in part to the large degree of unceftainty associated with the

experimental values and further work in this area seems to be necessary.

A two-fluid formulation of the MHD equations was obtained in Chapter
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T1I in which the protons are assumed to become collisionless and
anisotropic beyond an arbitrarily selected radius; the evolution of the
proton temperature and heat flux can then be described by the Chew-
Goldberger-Low theory and third moment equations of Whang, leading tec a
closed set of differential equations which admits numerical and asymptotic
solutions. These equations were then applied to a solar wind @ model
consisting of two regions: a) An inner region in which the energy exchange
rate between protons and electrons is sufficiently high such that their
temperatures are essentially equal and isotropic; under these conditions
the model is adequately described by the one-fluid formulation of the MHD
equations, and b) An outer region in which the protons are assumed to
become collisionless and anisotropic beyond a given radius. The electrons
are assumed .everywhere isotropic and the associated heat flux due teo
conduction alone. The two-fluid formulation of the MHD eguations is
utilized in the outer region to obtain numerical and asymptotic solutions
for the flow quantitigs throughout interplanetary space. In additiom,
the formulation of the CGL-Whang moment equations allows us to obtain
Jmicroscopic information about the proton distribution functiom for various
heliocentric distances.

The tesults obtained from the two-regiom model are in good agreement
with experimental observations. In particular, it is'shown that the effect
of the proton thermal anisotropy upon the angular motion is small and does
n' b significantly increase the predicted values for the azimuthal velocity

at 1 A.U.

From the solutions obtained for the models described above, we find
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that the amount of magnetic field energy converted into kinetic emergy
in the solar wind is small and has little effect upon the expansion
velocity. The most important effects of the magnetic field are the
refarding torque exerted upon the outer layers of the sun's atmosphere
and the inhibition of 'the flow of thermal energy across the field lines,
making possible a more complete conversion of this type of energy into
kinetic energy in the acceleration region. |

Finally, we find that in order to obtain reasonable values for the
particle density, magnetic field intensity and energy fluxes at 1 A.U.,
it is necessary to use a reduced value of the thermal conductivity co=-
efficient.

This value is approximately 1/6 of the classical Spitzer's value
and leads to coronal densities which are almost two orders of magnitude
lower than observed. These results give support to recent theoretical

work indicating that the magnetic field and plasma instabilities play an

important role in modifying the plasma tramsport coefficients,



154

APPENDIX A

The computer programs developed to obtain solutions to the one-
fluid model equations are written in APL/360 language and listed below.

The outward integration pregram is "MAIN' with subprograms WPARAM",
WSTARTY, “SOLWIND2" and "DER".

The corresponding program for the inward integration process is‘
WIMAIN® with subprograms, “PARAML™, "PARAM®, "START™, "SOLWIND2" and "DER."”..‘
The asymptotic solution is obtained by the program WASOL™ with subprograms
“PARAMI® and “PARAM".

The density, heat flux, magnetic field intensity and kinetic ‘and

magnetic field energy flows in all regioms, are computed by the program

VE'DBQH! .
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vMAINLOIV
MAINZICFG XM KM KL
'ENTER BETASTAR!
BSTR+]
EL+KM<D
‘ENTER ZETA'
ZETA<O
*ENTER PHISTR IN DEGREES!
PHISTR+Tx{02+360)
'ENTER GAMHA'
CAM<O
'ENTER I
H<[] .
‘ENTER STEP SIZE, MAX. 2 AND PRINTOUT INTERVA
L 1
Ic+(0
‘ENTER DGAM AND NO., OF EXECUTIONS'
AL+
IJ+1
XM+
M11:PARAM
START
M12:5QLWIND?2
FO«(7,(pZF))}p (ZFxRST+69600000000),(VF=xUST), (WFx
DELxUSTY, (THETAFXTST),D0ODZF, (PHIFx360+Q
2),BETAF
TSOL+ZF[d.ZF],VF[p.VF],THETAF[Q,THETAF]
MAT+« 2 1 &FG
+(MA=2)/0
+(MA=1)/M13
KM+l
M1k
M13:KL+1 .
M1y :+((KL=1)x(KM=1))/M15
+M16
M15:AL[13+AL01]+2

M16:+(MA=1)/M17

CAM«GAM-ALC1]

+M18
M17:CAM-GAM+ALL 1]
M18:1J«IJ+1

+(IJ=ALL2])/M18

+M11

M19:'PROGRAM EXECUTED VaTgs TIMES ;WISH TO
SAVEZ??

+M11



r11
[21
[3]

ful
(5]
[6]
[71]
[8]
ral
[10]
f111]

(121

[13].

[14]
[151]
fi6]
[17]
18]

[19]
[20]
(211
[22]
r23l
f2u]

156

VPARAMIO]V

PARAM;A:B;0ME;;GMSN XP;BP

OME+2 ,92E" 6

GMSN+«1,33E26
XI+((%2)+%BSTR)+((((%2)++BSTR)*2)-(2!(20PHISTR)*

"2)3BSTR)*0.5

UST<«(GMSN®OME+CAMXZETA) % +3
BST+((GMSNxZETA*2) +GAMXOME*2 )% +3
PSI+30PHISTR ’

DEL+PSI+ZETA
MU«(1-XI)+(1-(XI=((20PHISTR)*2))}
SIG<(14(PSIx1-MU)Y:ZETA}*0 .5
A+23(XIxDEL*2 )+ {2xDELxXIxMUxPSI+1-MU)-GAMXXT
B+XIx(0.5x1+DEL*2)+(MUxPST*2)+(522xXI)-H+GAM+DEL
xMUxPST

ALPH+A*B

MASS+(1836x9.1066E 28)+(0.,05x

6.6LU2E 24)

BC+1.38E 16

PST+(MASSxUST*2) 2 (2xBCxXT)

XP«0,{-2x8), (2%MUXZETA*2)

VINF«(CUBIC XP)[11l

YGAMMA: t.gAM3 ' RSTAR: vs(RSTH
BQEOOOOOQOU);' BETASTAE: '+BSTR

v PHISTAR: 'S PHISTR*(360+02); " XI: Y. XT

v H: toH:Y USTAR: 'LUST

YZETA: VL ZETA! PST: '.PST

'DELTA: '<DEL;! MU: VoMU

YSTGMA: 1. 5147

v ALPHA: VL ALPHEG TSTAR: VLPSTy) U
INF: Vs (VINF®UST)



(1l
(2]

[3]
(4]
[5]
[6]
[7]
[8]
(2]
[10]
f211]

(127
[13]
Li4]
[15]

{161
[17]
f18]
£19]
(201
[21]
[221]
(23]
[24]
{2531
£26]
[27]
[28]
[29]

157

VSTARTIOIV
START;A13;A2;B1:;B2,:€1:C2:C3:Cu;;C5;D01;D2;P3;E1;0:F1
1 F23R38;:T

DODZST+24( XI*xDEL*2 Y+ (2xDEL*xXIxMUxPSI +1-MU)-GAMx "
XI

A1<{(3xMU)-1+(1+MUIxEICG*2):(1-MU)Ix (" 1+5IG*

2)

A2«-:(1-MU)

B1+«ZETA+A1=PSI

B2+PSTIx1+42

Cl+v1+MUxPSI*2

C2«(DEL%*2)-DELxMUxPST

C3«{2xMUxFSI)-DELxMU

Ch+522xXT

C5+(2%xDELxMUxPST )Y +GAM-2xMUxPSTx2

D1« (ALPExXIxCAY+{(B2xC2xALPH*xXT+DEL ) +A2x{ P+{ALPHx
XIxC3xPSI)+DODZS5Tx2x(10PHISTR)I*2)

D2« (ALPHxXIxC2xB1:DELY+(A1xP)+(( (ALPExXIxCu )}~
2Y¥XDODZSTY+{ALPEXXI®(CS)~2,.5xDODZS T2
E1+((Q«2xDELx ¥ TxMUXPST+(1-MU)*2)x((1-MU)Ix(A2+52+%
DEL))-MU)Y+(2xDELxXIxB2)-D1
E2+{Qx((1-MU)x{A1+B1+DPEL))}-2)+DODZST+{ GAM=»XI )+ (
2xDELxXI*xB1)-D2
Fle(2xXTV-(R«{(XIxMUxPS5T#2)2(1-MU}*2)x(2xA2-(MUx
A2Y+MUY¥1

F2+-DODZST+2xRx(A1x1-MU)-1

S+«(E1-F2):2xF1

T+«{{5+2)+E2:F1)*0.5

DVDZST1+5+ T

DVDZST2+5-T

'DVDZST1 ' DVDZSTA

'*DYDEST2 't pVpZsT2

'‘DODZST ' DODZST

VS«1+DVDZST1x0.0001

THETAS«1+DODZST*0,0001

Z5+1+0.0001

X5«+25

TP<«GCAM,BSTR ,ZETA,H,PHISTR

TN<MU XTI ,DEL,SIG,ALPH , UST ,TST ,RST
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vSorLwINp2l01v
v SOLWIND?;X;Y;K;D;I;J;FVi;L;Rl;R?;RB;Ru;RS;RB
L3 TVi<eXS,VS,THETAS
2] FR<VF«HF+THETAF+DODZF«PHIF+«BETAF+10
3} ¥«rvifil,Ict1l,(s1c021)
+] Y«Ivir3l,rvif2]
5] I+Z3
5] Fi+ALPHxXI*(20PHISTR)*2
7] R2«XIxZETA*2
8] R3+ZETA*2
9] Ru«GAMxXI
10] CDP:K<(4,p,Y)pL+«X(J+«1] DER M+Y
11] +((LC11=0)=x(Ll2]=0)}/CJP
12] ~+(L[11<0)}/CHP
137 CEP:+(J<3+pppK[J31«JL+(X[114D) DER M«Y+K([
“i4JeJ+131xDpeX¥[2]+ 2 2 1{J1)/CEP
18] FVie(x[1]«+/X012)),Y«Y+(Xx0(23:6)x+/01] KL
1 2 23 34 3]
151 CKP:+((:FV1[11)2I)/CFP
167 COP:+((X[21xX[31-X(11)>0)/CDF
17]- MA+<2
18] -CGP
19] CFP:ZF+ZF,(sFV1{1])
201 I«ZF[p,Z2F1x1+IC(3]
211 VEeVFR, FV1L3]
221 THETAF<THETAF,FV1[2]
231 DODZF«DODZF,(-LU11xFVi[1]%2)
24] ~>((pDODZF)=1)/MHA
‘2571 +((|DODZF{pDODZF1)>(|DODZFL (pDODZF)~11))/CJIP
'26] MRA:>COP
27] CHP:'DODZ POS."!

28] MA€1

'29] ~-CGP

"30]1 CJP:'TEMP.<0 OR DODZ INCREASING'

'31] MA<O

1321 -CGP _

133] CGP:PHIF+( 30((ZETAX(SIG*2)-2F%2)+(VExZF)-MU+ZF))
+01

“34] WP<((VFx30PHIF)Y+ZETA%ZF)*DEL
-3s] BETAF<((BSTEx(1+P5T#2)xZF#*2):VFx(1+(30PHIF)*
2))xTHETAF
v
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YDERCOIV
V Z+X DER MiM1 M23;Y1:Y2;7;P;A,;8;:C

f1] +(M[11<0}/D1

[2] Pe-(ZETAsM[ 2] %X )% {A+1-Xx¥xSTG*2 )xB+11-MUxXxX s M[
2]

(3] Mle-(Rix14+PxP):M[1]*2.,5

(4] M24{0.5x(ML2]-VINF)xML2]+VINF)+(
2.5xM{ 113X )~ (GAM®X)-C+0,5xB3xXxXxBxBx((SIG*
2)-MU+M[2]) %2

[5] M2«M24+MUXRIx(AxBzM{2])-+VINF

[6] Yile{2xCxXI Y+ ((2xMUxR2:M[2] ) x(AxAxB*3)-AxBxB)+{Xx
M1xM2)+(2xM[1])-¥xRYy

(7] Yo (XIxM[21xM[2]) =ML 11 +R2xMUxAxAx{B=x3):M[

2] .
(s8] Z+{MLix2Y , (-Y1xM[2]+XxY2)
[gl +0
[10] D1:2+ 0 O
v
vpBQLO1v
v DBQ
[1] VENTER K
[23] K+(]

£3] NST«(ALPHxEx(TST%2.5)x (20PHISTR)#2)+2xSTxRST"=xBC

(4] NF<NSTsVFxZF%2

{51l BE+({ (MUxOUxMASSxNST=xUST*2 ) %
0.5):(ZF%x2)x{20PHIF)

[s] QF«-Kx((THETAFxTST)Y%2,5)xDODZF=xTST:RST

[7] PRF«(((ZFxRSTxBF)Y*2)x(USTxVFEx(10PHIF)*2)-DELxUST

- xWFx(1oPHIF)}x(20PHIF) )04

(8] KEF+«(MASSxNFxVFxUSTPx(ZFxRST)*2 )%
0.5x{{VFxUST)+HWF=xDELXUST)*2

(93 FelxNSTxUSTx (RST*2 Y xMASSxUST*2

[(10] 'TOTAL ENERGY FLUX';F

{111, NBQO+ 2 1 &(6,(pZF))p{(ZFxRST:
69600000000),NF,BF,QF ,PRF ,KEF



1]
(2]
31
4]
{51
(&1
£71

(8]
{91
[10]

1]
(21
(3]
iu]
[51

[13
(2]
3]

4]
fsl
[61
[71
:)
9]
{101

[11]

{121
[13]

£14]
[15]
[1s61]
[17]
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VIMAINIDIV

IMAINFG

'\ENTER STEP SIZE, MAX. Z AND PRINTOUT INTERVAL'
Ic+{]

PARAM1

PARAM

START

SOLWIND?2
PG<(7,(pZF))p(ZFxRSTP+69600000000), {VF=xUST), (KFx
DELxUST),(THETAF*xTST),DODZF,{PHIF*x360:0

2),BETAF

MAT+ 2 1 §FG
MAT
+(MA4=2)/0

YPARAMILO]V
PARAM1
GAM«TP[1]
BSTR+TP[2]
ZETA+TPL 3]
F<TP[u4]
PHISTR+TPLS]

TPARAMIOIY

PARAM AR ;0ME;CMSN  XPLBP

OME+2 ,92E 6

GMSN+«1.33E26
XI«((22)++BSTRY+((((#2)++B5STRY*2)-(2x{20PFISTR ) *
2)#+BSTR)*0.5

UST+(CMSNXOME+CAMXZETA) %43
RST+((CMSH*ZETA*x2 ) +GAMxOME*2 )%+ 3
PS5I+30PHISTR

DEL+PSI+ZETA
MU+(1-XIT)+(1-(XIT+{((20PHISTR)*2)))
STG+(14(PSIx1-MU)+ZETA)*0,5
A€2+(XI%DEL#*2)+(2=xDELxXIxMUxPST+1-MU)-GAM=XT
B+XIx(0.5x1+DEL*2)+(MUxPSI*2)+(5%2%xXI)-H+GAM+DEL
xMUxPST

ALPH+A%B

MASS+(1836%9,1066E 28)+(0.05x

6.6442E 24)

BC+1.38E 16

TST+(MASSxUST*2 ) +(2xBCxXI)

XP<0,(=2xH), (2xMUxZETA*2)

VINF<«(CUBIC XP)[11



1]
(2]

{3]
[4]
[5]
(]
[7]
[8]
[9]
[10]
f11]

[121
[13]
f1u]
151

[163
[171]
[18]
[19]
[20]
[21]
{22]
[23]
[24]

161

VSTARTLDIV
START;Ai;AQ;Bl;BQ;Ci;CQ;CS;CH;CS;Dl;D?;P;Ei;Q;Fi
sF2:R8,:T
DODZST«2+(XIXDEL*2)+(2xDELXXIXMUXPSI%1-MU)-GAHX

XTI

A1+((BXMU)-1+(1+MU)KSIG*2)%(1-MU)K(_1+SIG*

2) ‘

A2«-%(1-MU)

B1+2ETA+A1=xP5T

B2+PSIx1+A2

Cl«1+MUxP5I*2

C2+{DEL*x2)-DELxMUxPST

03« (2xMUxPSI)-DEL=MU

CUe5+2xXT

C5«(2%xDELxMUXPST)Y+GAM=-2xMUxPSI %2

D1« (ALPHxXIxC1)4(B2%(2xALPHxXI+DEL)+A2x(P+(ALPHx
YIxC3xPSIV+DODZST*2% (10PHISTR) *2)
D2+(ALPHXXIXCEXB1%DEL)+(A1xP)+(((ALPHXXIXCu)-
2)xDODZSTY+ (ALPH®XI*xC5)-2.,5xDODEST*2

E1<( (Q+2*xDELxXIxMUxPST+(1-MU)*2)x({1-HU)}x{A2+B2%
PELY)-1UY+(2xDPELxXI%xB2)-D1
Ez+{Qx((1nMU>x(A1+31aDEL))-2)+DODZST+(GAﬂxXI)+(
2xDELxXIxB1)-D2
F1+(2xXI)—(R+(XIxHUxPSI*2)%(1-MU)*2)x(2xA2-(MUx
A2Y+ MUY 1

Foe-DODZST+2xBx(Alx1-MU) -1

S«(E1-F2)22xF1

T«{{S*x2}+E2:F1)*0.5

DVDZSET1+«5+T

DVDZST2<S-T

VS+«1-DVDZIST1%x0.,0001

THETAS«1-DODZSTx0.0001

28«1-0.0001

XsS++28



VSOLKWIND2(0]V
VY SOLWVINDZ2:;X;Y:K3yD3T;J3FVI3L;R1;R2R3RU R5;RE

1] ITV1«XS,VS,"HETAS

[2] 2R+« VF+i/F+THETAFP«DODZF<~PHIF<«BETAF«10

[3] XeIvaC1l,rcl1l,(+10023)

Cu] Yerv103l,rvi{2]

(5] I+Zs

[6]  R1<«ALPHxXIx(20PHISTR)*2

[71 R2+«XIXZETA%2

(8] R3«ZETA*2

[9l Ru~GAMxXI .

[10] CDP:k+(4,p,Y)pL+X(J«1] DER M«Y

[11] CEP:+(J<3+pppX{J;3«JL«(X[11+D) DER M«Y+K[
T14JeJ+1;IxDeX02)2 2 2 1[JI)/CEP

(121 ~~((Lf1l=1)Yx(Ll2]=0))/ClP

11431 +((rfi1l=0}x(L[2]1=22))/CJP

[18] Fy1«(X013«+/X0120),¥+«Y+(X¥02]3+6)x+/01] K(
1 223 34 3]

[15] =((+PV1[1])<I)/CFP

[16] CcoP:+((X[2]1xX0(31-X[13)>0)/CDP

E17] MA<2

[18]1 -=ceGP

[19]) CFP:ZF<«ZF,(+FV1[1])

{20] I<ZFlop.2F)-ICL31xZF(p,2F]

[21] VF«VF,FV1[3]

[22) THETAF«THETAF ,FVi{2]

(23) DODZF«DODZF,(-LL11IxFVI[1]1%2)

(2u] MHEA:>COP

[25) CHP:'DVDZ<0;NUM.<0, DENOM,.>O'

(28] ~CGP .

[27] CJP:'DVDZ<0O;NUM.>0, DENOM.<O'

(28] CGP:PHIF<( 30((ZETAx(SIG*2)-2F%2):(VFxZF)-MU4ZF))
+01

[29] WF+«((VFx30PHIF)+ZETA%ZF)+DEL

[30) BETAF«((BSTRx(1+PSI*2)xZFx2)+VFx(1+(30PAIF)*
2))xTHETAF

n



(6]
[7]

£8]

(9]

(101
[111]
[12]
[13]
[1u4]
f15]
[16]
£171]

(1]
2]
(3]
[4]
(5]

(6]
£73

fa]
{9]

[10]
{11]

163

YPER[CO]V

Z+X DER M:M1:;M2:;Y1;:;Y2;T;P;A;B:Ci 0

Qelxtx(X>2)

+>{M[1]<0) /D1
P+-(ZETA%H[2]XX)X(A+1—XXXRSIG*2)XB++1-MUXXXX%M[
2] —
Mie-{RB1x1+PxP)+M[1]1%x2.5
M2+(O.Sx(M[2J—VINF)XM[2]+VINF)+(
2.5xM[1]%XI)*(GAMXX)-C+O.SXRSNX*XKBxBX((SIG*
2)-MU+M[2])*2

M2<M2+MUxR3x(AxB+M(2]))-+VINF
11+(2xCxXI)+((2xMUxR2+M[2J)X(AXAxB*a)-AxBxB)+(Xx
MixM2Y¥+(2xM[1])-X%Ru4
YQ*(XIxM[Q]xH[2])-M[1]+R2XMUKAXA*(B*3)%M[

2]

Z+(M1XM2),(—leHEQJ%XXY2)
+((¥Y1€0)x(¥2s0)x(Q=21))/D2

D3+ ((¥Y12Y¥Y2)>0)/0

Z+{¥1<0),(¥2<0)
=+0

D1:2« 0 0
D2:'R1 'i($X)xRST+69600000000

U«0
-+D3

vDBQLOIvV

DB@

1ENTER K

k+«0
NST+{ALPHXK*x{TST*2.5)x(20PHISTR)*2)32xUSTxRET*BC
NF«NST:VFPx2F %2

BF+{(HUx04xMASSxNST=xUST*2 }*

0.5):(2ZFx2)x(20PHIF)
QF«-Kx({THETAFxTST)*2.5)xDODZF*TST+RST

PRE<{{ (ZFxRSTxBF)*2)x(USTxVFx {1O0PHIF }»2}-DEL*UST
x/Fx(10PHIF)x(20PEIF)) 0l

KEF+(MASSxNFxVF*USTx (ZFxRET}*2)x
0.5x((VFxUST)+WF*xDELxUST) %2
FeHxNSTxUSTx(RST*2)xMASSxUST»2

tPOTAL BNERGY FLUX'WF

NBQI+« 2 1 ®(6,{pZF))p(ZFxRST*
69600000000),NF,BF,QF ,PRF ,KEF
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VASOLLOIV
v AS50L;P;S ;A

(1] PARAMI

[2] PARAM

£3} P+(1,5xVINP*x2)~H

[4] S5+(1,S5xVINF*x2)+H

(5] C10<GAM+P

[6]) A+(TSOLT3]~(XIxC10x(SxC10)-GAH)I=xTSOL[1]»
T2)+(PSOLI1Ix us3)+ ((TSOLL1]* 743)x(29xCGAM)-
35x5xC10)+8xP

[71 C11«-5xA+2xXIxP

[8] C12+0

fal] £13+-(5xC10x%x(SxC10)-CAM)+2xP

[10] Cilu+((15%xGAMxXIT*xC11)-35xL10x(XI*GxC11}+A)+
9xXIxP

(113 C21+0

[12] C22+(XIxC10=x(5xL10)-GAM) A

[13] C23«((14xC1O0x(XIxSxCA1)+A)-6xCGAMxXIxC11)+
9xA

(143 VVEC<«1,C10,C11,012,€13,014,0,0,0

[15] TVEC+0,0,1,€21,022,(23,0,0,0

(161 DTZVEC+«(,0,0,0,0,4,(5x021),(6x%xC22),(7%xC23)

(173 ‘ENTER MAX. Z AND PRINTOUT INTERVAL!

r181 Iy«Q :

[19] ZF«VF«WFP+THETAF«DODIF+PHIF+BETAF+10

[20] EP«TS0LT1]%-33

[21] COL:EPN<+1,ET*2+18

[22] Ve+/VINFxVVECXEFN

[23] T++/AxTVYECxXEPN

[24) DT«+/(-A+3)xDTZVECXEPN

[25] ZF<«ZF,(ET*x"3)

«[26] VFeVF,V

[27] DODZF<«DODZF,DT

(28] THETAF<«THETAF,T

[29] ET+(ZFlp,ZFIx1+IV[2])%-33

[30] ~(zFlp,ZF1sIV(11)/COL

[31] PHIFP«( 30((ZETAx(SIG*2)~-ZF%2):(VFxZF)-MU:ZF))+01

[32] WP«((VFx3CPHIF)+ZETAXLZF)+DEL

(33] BETAF+((BSTRx(1+PSI#2)xZF*2):iVFx(1+(30PHIF)*
2)YxTHETAF

(3] MAT« 2 1 ®(7,(pZF))}p(ZFxR5T*
69600000000), (VF=xUST), (WFxDELxUST),(THETAFxTST),
DODZF,(PHIFx360:02),BETAF



[1]
[21]
£3]
[4]
(5]

6]
{71

s8]
[9]

L10]
C113
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VPARAMI[0OIY
PARAM1
GAM<TPl1]
BSTR+TP[2]
ZETA+TP[ 3]
H«TPL 4]
PHISTR<TPLS]

VPARAMI[I]W

PARAM A B 0ME ;GMSN ; XPsBP

OME+2 ,92F &

GHMSK+1.33F26
XT<((22)+:2BSTRI+{({($2)++BSTR)*2)-(2x(20PHISTR) %
2):BSTR)Y=%0,5

UST«(GMSNXOME s CAMXZETA ) %+3
RET«((GMSNXZETA*2 ) +GAMXOME*2 )%+ 3
PSTI<30PHISTR

DEL+PST+ZETA
MU«(1-XT)+(1-(¥T+((20PHISTR}*2)))
SIG+{1+(PSIx1-MUY:ZETA)Y*0 .5

A«2+ (XIXDEL*2 )+ (2xDELxXIxMUxPSI+1-MU)-GAM=XT
BeXIx{0,5x1+DEL*2)+(MUxP5I*2)+(5+2xXT}~H+GAM+DEL
xMUXPST

ALPH+A:B

MASS5«(1836%9,1066F 28)+(0.05x

6.6LU2E 24)

BC+1.38E 16

TST«(MASS=xUST*2)+(2xBC=xXT)

¥P+«0,(-2xH)}, (2xMUXZETA=2)

VINF+(CUBIC XP)[1]

voBRILOIY

DBQ

*ENTER X!

k<0
NST+(ALPHxKx{(T8T%2,5)x(20PHISTR)*2)+2xUSTxRSTxBC
NF«NST:VEXZF*2

BF+({MUxOUxMASSxNSTxUST*2 ) *

0.5)2(2F%x2)x(20PHIF)

QF+-Kx((THETAF*TST)%2 ,5)xDODZF*xTST+RST
PRF«(((ZFxRSTxBF)*2)x{USTxVFx(10PHIF)*2)-DELxUST
xWFx(10PHIF)x(20PHIF) }:04L
KEF+(MASSxNFxVFExUSTx(ZFxRST)*2 )%
0.5%((VFxUST)+WFxDELxUST)*2

FPeHxNSTxUSTx(RST*#2 )xMASS*xUST*2

"\ POTAL ENERGY FLUX';F

NBQA+ 2 1 8(6,(pZF))p(ZFxR5T+
£9600000000),N F,BF,QF ,PRF ,KEF
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APPENDIX B

The divergence of the anisotropic proton pressure tensor

PF—- FJ- + (Fll"PJ-) (1)
may be obtalned as follows. In index notation we may write (Bl) as
9P (P é )+ 2 {Pu- P..I.)B B] (82)

where 6lj is the Kronecker's delta.

It follows that

319; 9?—!—- + B B 9 (P""F-*) (Pu—E.)[B 9’5..'5] (B3)
.9"4 T
but from Maxwall's equatlons

2B;

=z (B4)
%

hence we obtain

Y. F P - VF_L+ B IB V(Pﬂ P.-.)}.{_ (PH-P-‘)[(E"V) E] (B5)

which is the desired result.
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APPENDIX C

The numerical integration process is optimized by expressing the

system of governing equations in reciprocal space. Thus we introduce the

new independent variable X, where
~1
X=2Z
and it follows that for any function \r’z) we have
d.'f’(%) %% d4¥P
dz X

The system of equatlons (I11.2.25) then becomes

bi. f’i% + bz _(Wx) + bgade" b4 %%‘

+ b; dca“ by, 99 | b, 98 . biy
ax

—_— Lb ——
¢ TX ax

(cL)

(c2)

(c3)

where the coefficients bij’ (j=1,8) are given by the following expressions:

 =EVR L [e;s:.ﬁg( i+2eov% Y4 OpasP (-2singd+ae ] -

g/LV 5{"44'11;6

bie = - (8/%)[L(6n-0u)sinzgeos’s-E v Hand |

bna. - \/doJE;Q/&L ; ba = \I'sinihf/ﬁz

bis = bie =0 3 b, = \4/71

(C4)

(C5}

£CH)

(c7)
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big = ~¥ [0, + 8. + 5 (0u-04) sirfd (14+2ca)- ¥EX +

EH2w?

(€8)
()2_1 = "IE. (G,I—G_L) S-’nzﬁ Co'aZgS- '§/vaz-!~an¢ (C9)
baz =- % [gvz.{.%(9,,—6;)@52;‘::032;5—%/&'()(2] (c10)
- by = - %cos;ﬁ sind 3 bpg =- boa RGN

. (c12)

bz& = _ 2_\'/’?(9"_@4_)5[»1 Zyéc‘o'bzﬂ_ E_)% ‘ng"

(C13)

zco\:# [oucos (- B8u sink /A8 ) ~4Queestd /4 ]

(C14)

baz = v.%_(.cbs?{s;,,?sfe" (‘469¢fosz¢/4“§y")= ga“casﬁ/g’;[
: (C15)

byz = I-68u caszsé’/q»‘gvz (C16)

bag = Das =baa =Pay =0 ©17)

by = - 20 [394.:95"55(«-;@%)_ s1id] - Smse{sen‘:da..
x A v %
‘ (c18)
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b1 = (Qeesd/va)(treas®)+(Qusin /) [(Bueos/25Y)-1 ]
(C19)

gz = % coshsingd [ E’i::z_w.‘ +0.(1-0,co0g/2e] 20y

bz = o y - bag = (9“ “’52?5/2%"1) -1 (c21)

b4g = b4g = b.q-; =0 (c22)

b‘_g = - (Q _.,cosg‘/xs)(cos»z?‘ - 3) - (9.1./ x) (l*“’?) ((-— e,z_coszg( / ZSV?)

{C23)
bs‘g = gﬁ.‘\?./iﬁ. (6., cosszf + Gy s:'nz¢/)(=_) (C24)
bse = Vé;(- cosdsind (B4 - 24, cos,ﬁ/)(z) (c25)
bgg = 1 5 b54 = O bss = 208 & {C26)

xz
bse = bsy =0 (c27)

bsg = -E-[Gn s'n% + @y Cos 9‘([+cos';()/x’-] (C28)

bet = '-""'5“ (61 +Qrecosd/x*) | (c29)

bﬁz — -'-V_é\(— C,05¢ S(ngf (6_,_ -+ Q_‘_“sd/)ﬂ) (C30)
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b(,a =0 b64 =1 5 bag =0 (C31)

bes = C";f s begr =a (c32)
bey = L (1+easB) (81 + Queosd/x?) (€33)
by = b;lz = bz = by = bys = by =0 (C34)
| b = —Gf/zcoszg (c35)

bog = Ko ces®h, [;(VEI- W)+ %(5%-{-48_,_ +6) +
4 cos 4 (6,-6L) + %’cosqé Sing (e,,-e,;,)_?_l?y; tand X _

YEK—- HE + CQII+QJ_) c°5¢/22<2_] {(C36)

and

tan b = ;ei; (dwx~ T ©37)
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APPENDIX D

The computer programs developed to obtain solutions to the two-
fluid, two-region model are listed below. In the inner region the pro-
‘grams listed in Appendix A are used to compute the solutions up to the
transition point. |

The outward two-fluid integration program is "MAIN™ with subpro-
grams PARAM', PARAMI™, "START", "SOLWINDZ", wpER", “SOLWIND3" and "DERA".
The asymptotic solutions are obtained with the program ™ASOLAN" and sub-
programs WPARAMIY, “PARAM? and "COEFF*.

The heat fluxes, demsity, magnetic field intensity and energy flows
are computed with the “NQTF'" program. The program "RATIOS" calculates
the proton temperature anisotxopy and proton—elecirun temperature ratio.
“DFP® computes the parameter values that determine the proton velocity
distribution function.

The constant contour curves of the distribution function may be
obtained with the program "FUN" and subprograms npn g MZERQ™ and

"ZEROP™.
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(18]
(1913
£20]
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[22]
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[25]
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[27]
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[35]
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VMAINIDDY

MATNICFG XMy KM KL

Y‘ENTER BETASTAR?

BSTR<O

EL<KM+0

'‘ENTER ZETA!

ZETA<O

'"ENTER PHISTR IN DEGREES?
PHISTR+[x(024+360)

YENTER GAMMA!

GCAM«[

YENTER RATIO OF GAMPAR TQ GAMPER'
G+

‘ENTER H?

H+

‘ENTER STRP SIZE, TRANSITION 2, PRINTOUT INTERYV
AL AND MAX.Z)

Iec<

‘ENTER DGAM AND NO. OF EXECUTIONS'
AL+[]

IJ«1

XM+
MA1:PARAM

START
M12:SO0LWIHND?2

FOe(7,(0ZF)Y)p (ZFxRST+69600000000),(VFxUST),(KWFx
DEL=UST),(THETAFxTST),DODZF,(PHIFx360%0
2),BETAF
TSOL+ZF[p,2F1,VFLp,VF], THETAF p , THETAF] ,WF{p ,¥WF]
wPHIF[p,PEIF]1,DODZF[p,PODZF]

MAT< 2 1 8§FC

>(MA=2)/M20
M21:+»(HA=1)/M13

Kie1

M1y
Mi3:KL+1%
My >»{((KL=1)x(KM=1))/M15

+M16
M15:AL[1]«ALL13%2
Mi6:+(MA=1)/M17

GAM«GAM-ALL1]

+M18
M17:GAN+~GAM+ALL1]
M18:IJ«IJ+1

+(IJ=ALC2]) /M1

+M11



fut]
(u2]
[u3]
[aul
fus]

[46]
[47]
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M1G ' PROQGRAM EXECUTED I PIMES WISH TO

SAVE?!
+M11

M20:50LWINGS

FGA+(11.pZF)p(ZPxRSTeagsoooooooo).(VFxUST),(HXx
DELXUSTXZF).(TPLxTST),(TPBxTST).QPL.QPR.(TEMTST)
,DTEDZ,(PEIFx360%02),BETAF
TSOLA+ZF[pZF],VF[DVF],TPL[QTPL].TPR[DTPR].QPL[Q
QPL].QPE[pQPR].TE[pT83.PHIF[pPHIF].HX[pHX]
+(MA=2)/0

>M21

v

VPARAMI[I]V

PARAM; A3 BOME GMSN; XPLEP

OME«2 .92F 6

GMSN+1.33E26
XI+((%2)+%BSTF)+((((%2)+%BSTR)*2)-(Zx(zoPHISTR)*
2)+BSTR)*0.5

UST+( CMSYxOME + GAMXZETA)* %3

RPET«({ GMSNXZETA*2) +GAMXOME*2) %+ 3
P5I«30PHISTR

DEL+PSI+EZETA
MU+(1-XI)+(1-(XI%((QOPHISTR)*E)))
SIG+{(1+(PSI=x1-MU)+ZETA)*0.5

A<D+ (XIxDEL*2)+{2xDELXXIxHUXxPSI21=-MU)=GAMXET
BeXIx{0.5x1+DEL#*2)+(MUxPSI*2)+(5+2xXI)~H+GAN+DEL
xMUxPST

ALPH+A+B

MASS+(1836x3,1066E 28)+(0,05x

6.6442E5 24)

BC«1.38F 16

PST«(MASSxUSTx2)+(2xBCxXTI)

XP<0, (-2xH),(2xMUxEETA*2)

VINF<(CUBIC XP)[1]

YGAMMA: ViGAM! RSTAR: 1. (RST+
69600000000);" BETASTAR: ' BSTR

' PHISTAR: ' PHISTR*x(360%02);" XI: vLuXT

v H: v.R " USTAR: VLUST

YZETA: VIEETAG! PSI: V. PST

"DELTA: ‘3 DEL;! MU VMU

Y3TGMA . vL5IG

v ALPHA: tLALBH ! TSTAR : varSTs ! U
INF: ';(VINFXUST) '
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[3]
[l
[s]
[6]
[73
{8l
[91]
{101
[11]

f121]

[13]

C1u]
(153

(161
{171
[18]
[19]
[20]
{213
[22]
{23]
[24]
[25]
[26]
[27]

[28].

[29]
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YSTART(OIW
START1A13A2;B1;B2:,C1;C02,C3;C4;C05:D1;D2,P3E1;Q;5F1
F2:F35;7T

DODZST+2+( XIxDEL*x2 )+ (2xDELXXIxMUXxPSIs1~MU)-GAM=
XI

A1« ((3xMU) -1+ (1+MUIxSTG*2) 2 (1-MUIx (T 1+SIG=*

2)

A2<-¥(1-MU)

B1+«ZETA+A1xPST

B2+«PSIx1+42

Cl«1+MUxPST*2

C2+«(DEL*2)-DELxMU=PST

C3«(2xMUxPSI)-DELxMU

CH+5+2xXYT

C5+(2xDELxMU%PST )+ GAM-2xMUxPST*2
D1+(ALPExXTxC1)+(B2xC2xALPHxXT+DEL)+A2%x( P+~ (ALPHx
XI%xC3xPSI)+DODZST=2x(1OPHISTR)I*2)

D2« (ALPHxXIxC2xB1+DEL)Y+(ALxP)Y+( ((ALPHXxXIxCh)-
2IxDODZSET )+ {ALPHxXIx(5)-2.5%xD0D257%2
Ele((Qe2xDELxXIxMUxPST+(1-HU)I*2)x((1-MUYx(A2+B2+
DEL) ) -MUY+(2xDELxXIxB2)-D1
E2+(Qx({1-MU)Y*x(A1+B1:DEL))~2)+DODZST+{CAMXXI ) +(

- 2xDELxXIxB1)-D2

Fle{2xXT)-(R«( XTxMUxPSI«2)3(1-MUY»2)x(2x42-(HUx
A2)+HUI+1
F2+-DODZST+2xRAx(A1x1-MU) -1
S+(E1-F2)+2xP1
T«((S*2)+E2+P1}%0.5

DVDZST1<«5+T

DVDIST2+5-T

'DVYDZSTI YW DVDZSTL

YPYDZsm? "2 DVDZST2

‘DODZST tLDODZST
VS+1+DVDZ5T1%x0,0001
THETAS«1+DODZ5T=0.0001
Z5+1+0.0001

X85+%Z8

TP+GAM  BSTR,ZFETAH , PHISTR

TRNeMU XTI ,DEL ., STGC, ALPR UST , TST ,RST
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vSOLWIED2001V
Y SOLWIND2:X;Y3F3;D3 T3 FV1iL;R1;R2R3,R4;R5;F6

[1] IV1<X5,V5, THETAS
(23] LR+ VF«WF<THETAFP+«DODZF«PHIF+BETAF+10
(3] XeIVi{1l,7c01,(x1C[21)
fu] Y«IViCa3l,rvrifz]
[s] I+Z25
[6] R1<«ALPHxXIx(20PHISTR)*2
[7] R2«XIxZETA%2
[g] R3+ZETA*?2
(9] Rb<GAMxXT
[10]) CDP:K«(Y4,p,Y)pL+X[J«1] DER M+Y
[11]1 »((z011=c)x(L(2]1=0))/CJP
[12] +(L{11<90)/CHP
{13] cgp:+(J<3+pppH[J;]+JL+(X[11+D) DER M«Y+X[

1+J+J+131xD+X[23% 2 2 1[J1)/CEP
Fr1u)] PUVi«(X[11<+/%0121),¥<«¥Y+(X021s6)x+/[2] KL

12 2 3 34 3]
[15F CEP:+((+FVi[11)2I)/CFP
[16]) CopP:»((Xx021xx(31-xC11)>0)/CDP
[17] MA=2
[18] ~=CGP
f19] CFP;ZF«ZF,(+FV1l1])})
f20] I<ZFlp,ZF1x1+ICL3]
[21] VF«VF,FV1[ 3]
[22] THETAF+<THETAF,FV1[2]
[23] DODZF<«DODZF,(-L{11xFVi[11%2)
{2u] +((pDODZF)=1)/MHA
[25] =+(({DODZFLpDODZF]1)>(|DODZFL{pDODZF}-1]13)/CJP
[26] MHA:>COP
[27]) CHP:'DODZ POS.!

[28]) MA=1

[29] ~(CGP

£30] CJP:'TEMP.<0 OR DODZ INCREASING'

[31] MA+O

(321 =¢coP

[(33) CCP:PHIF«( 30({ZETA*(SIG*2)-2ZF*2}+(VFxZF)-MU3ZF))
+01

[34] WFP<((VFx30OPHIF)+ZETAxZF)*DEL
[35] BETAF«({(BSTRx(1+PSI%2)xZF*2):VFx(1+(30PHIF)*
2) )xTHETAF



(1]
(2]

[3]
{4
(5]
(6]
[73

£8]
(9]
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YDER([OIV

74X DER Mi;M1;M2;Y1:Y2;T;P;438,C

+(ML11<0)/D1 :
P+-(ZETA%H[EJKX)X(A+1—XxXxSIG*2)xB+%1—MUXXXX%H[
2] '

Mle-(R1lxi+PxPYsM{11%2.5

M0, 5x(M[2]-VINF)xMT{2]+VINF)+(

2 SxM[ 1) 2 XT) ~(CAMXX)-C«0 ,5xR3xXxXxBxBx ((SIC*
2Y-MU+M[2]) %2

MoO+M2+MUxR3x(AxB+M[2]) -+ VINF
r1+(2x0xxr)+((2xMUxR2+M[2])x(AxAxB*s)-AxBxB)+(Xx
MixM2)+{2xM[1])-XxEu4
Y2+(XIXM[2]XM[2])-M[1]+R2xMUxAXAx(B*S)%M[

21 :

Ze(MixM2),(-Y1xM[2]2XxY2)

+0

{101 p1:Z+« 0 O

v



il

23
(3]
tul

[s1]
[63]

7]
(8]

(9l
{10]
f11]

(121
{133
{143
{151

{16]

[17]
(i8]
{191]
(20]
[21]
[22]
[23]
[2u4]
f251]
{26]
[(27]
(28]
{29]
[30]
{323
{321
{33l
[34]
r3s]
[36]
[37]
[3s]
[39]
(40l
[451]
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VSOoLWIND3I[0O1V

YV SOLWINDA XY ANVE T Ly JL PV D
GPER«(TSOL[21xTS0LL 11 %2)x(XT#0.5)xTSOLL 3T x2x%
0.03914713205%(207S0LL5])xTSOLI6)+ALPHx({20PHISTR)*

2ix1+622
GPAR+G*GPER
'GPAR VA GPAR ! GPRER '« ?PEE

QPL1+GPARXTSOLL33x((TSOLL31+XT)%0.5):2xTS0LL2]xTS0LT1]*

2

QPR1+QPL1x2xGPER+GPAR

ZF«VF«i X< TPL+«PPR«QPL+QPR« TE«DTEDZ+«BETAF+PHIF+«DODZF+THETAF-

FF+10

X<{:z7m50L01]),7CL1],(+ICcTu])

Y<mS0Ll21,(75050uleT50L[11),(2pT7SOLT3])),QPL1,QPRL,TSOLL

3]

T«T50L[1]

ALPHE«ALPHx1,04074206

AN«(ALPHEX(20PHISTRY*2),(0.5xXIxDEL*2), (AxXI), (GAMxXI),(

ZETAxXTxMU) , (XIxMU) (XTxDEL*2),(2xDEL)
CDP1E+(%,0,Y)pl«X[J«1] DERA M<Y

+((+/L)=0)/CJE

+(L{7]<0)/CHP

CEP:+(J<3+pppllJs)«JL«{X[11+D) DERA M«Y+K[ 14J«J+1;1xD«X[

2] 2 2 1[J3)/CEP

FU«(X[1)«+/X[123),Y«y+(¥L2]s6)x+/01] 2[1 2 2 3 3

b3l

CKP:~((+FV[11)2I)/CFP

COP:+((X[2)=xX[31-X[11)>0)/CDP

MA+?2

>CGP

CPP:ZF<ZF,(+FV{11)

VF+«VF,F¥[2]"

JT«ZFlp,2F1x1+IC[3]

WX+WX,FV[3]

TPL«TPL,FPV[u]

TPR«TPR,FV[5]

QPL+QPL,FV(6]

QPR+QFPR,FVI7]

TE«TE ,FV[8]

DTEDZ+DTEDRZ ,(-L{U71xFV[11%2)

+{{poDTEDZ)=1)/MHA

+((|DTEDZLpDTEDZ])>( | DTEDZ[ 1+4pDTEDZ])) /CJP

MHA:+COP

CHP:'DTEDZ POS.'

MA+1

+0GP

CJP:'TEMP<O QR DTEDZ INCR.!

MA+0

+CGP

CCPi1PHIF«( 30(ZF:VFIYXx(DELxWX}-ZETA)+01

BETAF+0.5x({BSTR*x{1+PST«2)x2F*2)+VFx(1+(30PHIF)*2))xTE+((

axTPRY+TPL)+3)
v
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YPERALDIIV
Z«X DERA H;Ml;M?;A;E;C;D;E;F;MX;SL;MXl;MX?;MXB;MXH;MXS;MXG
s MX7

+(M[7]<0) /D11
02F1+1~2xSF12+1—CF12++1+TF12+TFIxTFI+(%M[1]xX)x(DELxM[
21)Y-Z2ETA

SzFI+2x(SFI+SF12*o.s)x(CFI+-CF12*o.5)
Mi«-(AN[11x14TFT2)+ML73%2.5
M2+(0.5xA+XIXM[1]*2)+(AN[2]X(H[2]*2)%B+X*2)+(
0.25x(5xM[7])+(uxM[uJ)+M[33)+0.5xCFI2xM[3}-M[u]
M2+M2+(((C+DELXS2FI%H[1IXX)XM[QJxMEBJ-H[43)%M)+((M[
5]+M[6])x!CFI%ExB)-AN[3]+(ANEHJXX)+AN[5]xTFIXX

A11+A—((D+AN[6]xM[1JXB)XTFIQ)+O.Sx(M[HJXSFIEX1+QXCFI2)+(M[

3]xCFI2x1-2x8FI2)+M(7]
A12+-(DEL%X)X(0.Sx(H[31-M[u])XS2FIxCFI2)-DxTFI
A13«M[1]xCFI2%2

Alu<M[11x8FI2%2

417+ (ML11 e XY x (XxM1x222) + 40734 MI4 ]+ (
o,5x5F12x(1+2x0FI2)xH[3]-M[u])+(AN[7Jx(M[2]%X)*2)—AN[
4lxX

MX1+411,4A12,A13,414,0,0
A21€€0.5xS2FI%CFI2xM[33-M{ul)-DxOFI
A22+-(DEL+X)XA+(O.SXCQFIXCFI2xM[3]—M[u])-D

A24« 1xA23«-M[11xS2FT+y
A27+-((M[ilezFIxCFrzxM[33-M[u])%2xX)+AN[8}xAxH[2]%B
MY2+A21,422,A23,A24,0,0
A31*(2XCFI+M[ll)x(M[3]XCFIXI—BxM[HJXSFIQ%uxA)—CFIQxE+
uxM{5]1:E

A32+(C+2)x(M[33x1+6xM[ 4 IxCFI2+UxA)-2xExCFI

A33«1-6xM[ 3I=xCFI23u x4
A37+*((2XN[3]%X)X((BxM[uGCFIZX1+CFI2)%uxA)-SFI2)+
2xEXCFIxSFI2+X

M¥3+A31,A32,433,0,0,0
Au1+((M[G]xCFIX1+CFI2)%M[1JXB)+(M[HJXSFI2x(H[4]xCFI2%
oxA)-1):4[1]

Au2(C:2)x (MLB)XCFT+B)+M{ 4 x1-M{u]=xCFI2%2x4

A+ (M[3]=xCFI2:2x4)-1
A47+_((M[aGCFrchrz-a)eXxB)+(M[u]x(1+CFI2)xi-M[h]xCFI2e
2xA):X

MXu«Aut,A42,0,A44,0,0
A51«(2xCFPTsMI11) (ML 3I=CFI)+M[5IxSFI2+B
A52+«(C+2)Y=M[3]-CFIxE+2

A53+1

A55+«2xCFI+B .

AST«(2+X)x (MC3IxSFI2)+(M[SIxCFIx14CFI2) B
MYS5«A51,A52,A453,0,455,0
A61+(SFI2+121)xFeM{ul+H[6IxCFI*B

AG2+-CxF32

ABL+1

A66<CFI%B

ABT7<(14CFI2)=xF:X

MX6+A61,462,0,464,0,466

MXT«A17,A27,437,A47 ,4A57,487



fu1]
[42]
[u3]
fog]

£11

(1]
[23
[3]
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SL+BMY<(6,6pMY 1, X2 ,MX3, MY MX5,11X6
Z( 8L+ . xM¥X7), (MixM2}
+0Q

D11:2«7p0

v

yNQTF(O1Y

NQgTF K;Zl;Vl;PHIl;Z;V;PHI;NST;NF;BF;Ql;QE;F;A;QL;QR;PRF;H;
KEF

Z1«MAT[ 11]%x69600000000+RST

BNQ+10

Vi+MAT[ 321:UST

PHI1+<02xMAT[ ;6]1+360

Z+721,2F

V+V1i,VF

WettATL 31, FCAL3;]

PHI+«PHIA1,PHIF

NET«(ALPHxKx (P5T%2,5)x(20PHISTR)*2)+2xUST*xRST*BC
DFE+BSTsUXZ %2

BF+{ (MUxOUxMASSxNSTxUST#2)*0,5)+(2#*2)x|20PH]I

O1«-Kx(MATT ;41%2,5)xMAT[ ;53 =xTST+RST
QE+-Ex{(TExPST)*2.5)=DIEDZXTET+RET=1 Ok
F<HXNSTxUST=x (RS T%2 ) xMASSxUST*2

'"POTAL ENERGY FLUX ViFs F/R =2 : YaFe(
214x69600000000) %2

OL«QPLxA«NST*BCxTST*xUST

QR<QFPE x4

PRE«({ (ZxRSTxBF)#2)x{(USTxVx(10PHI)*2)-H=x(10PHI }*(
20PHI))}:0k4

KEF«(MASSxNFxVxUSPTx (ZxRBSTI*2)x0,5x{ (VxUST)+I/)*2

BNQ< 2 1 &(8,pZ)p(ZXxR5T:69600000000},NF,BF,Q1,QE,P," %, (F+(
pQ1)p0),.QR,PRF,KEF

YRATIOS[OIV

RATIOS

PL<(0+ 2 1 &(4,pTPLYpFGAL1;3,.(TPL+TPR), ((TPL+2xTPR)xTST*
3).((TPL+2xTPR)%BXTE)

vpFPLOI"

DFP;GPL;GPR

GPL+(2xQPLx(VFxZF%x2)x (XI*TPL}*0.5)%TPL
GPR<(QPRx{VFxZF*2)x(XI+TPL)=*0.5)+TPR

O« 2 1 §(5,pCPL)YpFGAL1;]1,6PL,GPR,(TPL+TPR), (TPLxTST)



180

VASOLAN[DIV
Vv ASOLANP;S
(1] PARAML
(21 PARAM
(3] Pe(1.5xVINF*2)-H
(4] S+{1,5xVINF*x2)}+H
(5] EO+«TSOLAC1]%x-23
F561] TSOLA[S)+«TSOLALSI=xTS0LAL 1]
(7] A«0,A4«TSOLAL7 3 4 5 6 9J+EO0x 4 6 3 15 12 3
[8]1 BOL:COEFF
(3] EQU<EO*0 18
f10] Vy+«c10,011,0,013,C14,015,016,017,€C18
f11] TEV«1,0,(022,023,C24,025,026,C027,0C
fi2] 7PLV<+1,0,0,0,0,0,C86,0,0
£13] PPEV<«1,0,0,C83,C44,0,C46,047,C48
{143 @QPLV«1,0,0,053,054,0,056,057,C58
[15] ¢@PRV+1,0,0,(63,064,0,066,067,(068
[16] DITV+u4,0,{(6x022),(7xC23),(8x024),(9xC25),{10xC26},(
11x£27),0
[17] WV+«1,0,0,073,C74,0,076,077,C78
(18] A2«TSOLAL7]4+(EO*k)x+/TEVXEQV
(193 A3«TSOLAL3]+(E0*6)x+/TPLVXEOV
[20] A4~«~TSOLALL]+{(EO%x3)x+/TPRVXEOQOV
[21] A5«TSOLALS]+(EO*15)%x+/QPLVXEOV
[22] A6+7S0LALB]+(E0%12)x+/QPRVXEQV
[23] A7«7SOLATS1+(EO*3)x+/HWV=xEQOV
(243 ~»((A2-A723)<0.001%A2)/RUR
[25] A«0,A2,A2,A4,45,A6,47
(26)] =+BOL ‘
(271 BUR«'ENTER MAY. Z AND PRINTOUT INTERVAL'
f28]1 Iv<C
[29]1 ‘'4 VECTOR RV
[30] CZF«VF+WF+BETAF«TPL+TPR«QPL+QFPR+TE+«DTEDZ«PHTF+ 10
[31] ET+«TPSOLAL1]%-:3
[32] COL:EPN«ET*0,18
[33]) V<«VINFx1+EPN[4]x+/VVUXEPN
[34] P+A2xEPNESIx+/TEVXEDRY
[35] TPAR+A3xEPN{7])x+/TPLVXEPHN
{36] TPER<A4xEFPN[4]1x+/TPRVXEFRH
[37) QPAR«ASx(EPN[2]1%15)%+/QPLV*EPN
[38) QPER«A6x{(EPH[2])%12)x+/QPRV=EPN
[39] DT«-(A2:3)xEPN[B81x+/DTUXEPHN
[80])] W<«ATxEPN[4]x+/WYxEPN
{41) ZF<+ZF,(ET* 3)
[42] VF<«VF,V
[u3] DTEDZ<«DTEDZ DT
f44] TE«TE,T
[u5] TPL+TPL,TPAR
{46] TPR«TPR,TPEF



fa7]
fugl
fuva]
{50]
[51]
[52]
f53]

{54]

(11
[2]
3]
ful-
[5]

{13
[21]
3]

[u]
. [s]
(63
{73
8]
9]
[i10]
[111
f12]
f13]
fin]
[15]
{1s]
[17]
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QPL+QPL, QPAP

QPR+QPR,QPER

WF«HF i/

ET«(ZF[p,aF)1x1+IV[2])%-+3

+(ZF[p,2F]=sTV(11)/C0OL

PHIF<( 30((ZETAx(SIC*2)-2F*2):(VFxZF)-MU+ZF})+01
BETAF«<0.5%x((BSTEx(1+PSI+2)xZF#2 )+ VFx {1+ (30PHIF)*2) ) xTE+{((
2xTPR)+TPL)%3)

[« 2 1 &FGA+(11,p2F)p(ZFxPST*69600000000), (VFxUS?), (WFxDEL
xUST) , (TPLxTST), (TPR=xTST),QPL QPP ,(TEXPST),DILDZ, (PEIFx
360:02),BETAF

v

CFPARAMAITIV
PARAML
GAM+TP[ 1]
BSTR«TP[2]
ZETA<TP[3]
H«TP[4]
PHISTR+TP[5]

VPARAMIO]V

PARAM ;A B OME ;GMSN 3 XP;BP

OUE«2 ,92E 6

GMEH+1.33E26
XI+{(32)+5BS5TR)+((((:2)+3BSTR)*2}-(2x{20PHISTR)*2)+BSTR)*
0.5

UST«(CMEN*xOME+GAM*ZETA )% +3

RSP« ((GMSIXZETA*2) + GAMXOME#2 ) %23

PSI+«3CPHISTR

DEL«PSI+ZETA

MU<{1-XT)2(1-(XI+{(20PEISTR}*2)))
SIG+(1+(PSIx1-MUYSZETA)*0.5

A+2+ (XTxDEL*2)+{2xDEL*xXIxMUxPST+1-MU) -GAMxXT
BeXIx(0,5x14DEL*2 )+ (MUxPST*2)+(542xXT)~H+GAM+DELxMUxPST
ALPH+A+B

MASS«(1836x9,1066E 28)+(0.05%x6.6442F 24)

BC+1.38E 16

TETe (MASSxUST*2)+(2%BCxXT)

XP«0, (-2xH), (2xMUxZETA*2}

VINF<{CUBIC XP)[1]



£1]
(2]
[3]
(sl
[5]

£e1l
£73
[s]
[9]
£10]
[11]
[12]
f13]
f1u]
[15]

L16]
[171]
(18]

[19]
{201
213

[221

f23]
*[24]

[25]
[26]
[27]

(281
[29]
{301
£3a1]
£321

[33]
[3u?
{354
[36]
371

[238]
{393
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VCOEFFLOIV

COEFF ;M

010« ((GAMxXI)-A[4]1)+M+XIXP

Cl1«-5xA[2] %4 xM
622+(2x010xA[u]+(XIxSx010)—GAMxXI)%A[E]
013+((4xA[u]x01o)-A[33+5xA[21x022)+uxM
023+((011x(5xA[u])+(14xXIxCleS)-6xGAMxXI)—A[2]x61o)x
11su2xA02]

c1u+(-(SxAtzlxcza)-uxA[u]x011)+uxM
Cob+C11x1+4xXTxC11%x543xA02]

C15«-5xA[2])xC2u +hxM
C364((bxA[51+A03))-VINI+ZETAYXVINF+ZETA

C43«-C10

Chlb+e-C11
646+(C10*2)+(((1.SxA[SJ%A[MJ)+VINF%2xZETA)XVIHF%ZETA)-Cia
Cu7«{(2x010x011)-C1u

CuB+{(C11%2)-C15
C?S+((QXA[4]xCHB)+((QXVINF+ZETAJX(AEHExVINF%ZETﬂ)—
BxA[EJ)+2xClox(GXXIXSXC13)+(3xA[2]xc22)+A[3]-2xA[
ulsc10)ss5xaf2]
016+(((2xVINF%ZETA)xA[B]-A[u]xVInFeZETA)—(uxA[u]xcus)+
SxA[2]1xC25) sh=xM
c25+(”7xﬂtu]xCuv)+(20x010x(4Eu]x(VINF*2)+(ZETA*2))+(XIxSx
CA4Y+A[2]I%xC2322)
026+czs+(c11x(3xA[3])+(20xxrx3xc13)+(‘5xA[u]xc1o)+
axA[2]x022)+(uxA[2]x013)-01ux(axcﬁﬁxXI>+A{4]
C26+C26+9xA[21]
Ci7+((_SXA[2]xC26%u)+(VINF*?JXAEHJXC10+ZETA*2)%M
Co7+( 16xALUuIxCUB)+(T2xC11x(22xAL4 Ix (VINF*2)+ (ZETA*
2))+(22xXIxSx01u)+(_6xA[u]x011)+9xA[2]x023)

027027+ (uxCA5xATL 1 +3xCAMXXT ) -(CLOx (buxXIxSxC15)+
1650xA[2)xC2u4+61)+uxA[2]xC1L

C27+027+21xA02]
CiB+((w5xA[2]x027%u)+(CiixA[u]N(VINF*?)*(ZET&*?))-A[
ulxCua)sM

053+-C1043%xA[3]xALU 12uxXT=ZETAxVINF=xAL5]

Csu+-C11
CSG+(3x(A[31*2)%hxXIxZETAxVINFXAESJ)+(3R(VINF*2)+
2xZETA*2)-C13+4C010%xC10+2xC53

057+~C1h+2x011%xC53

C58«(C11+2)-C15

CB3+-(2xC10)+{A[u1*2) +2xXTxZETARVIHF*ALG]

Cebu+-2xC11
CE6«("2xC10x(2xC63)+C10)+("2xC13)+AL3]xALU I +uxXI*xZETAXVINE
xA[6]

C67+(6xC10xC1127)+( 2xC14)-18xL11xC6337

C6B8+({ 3xC11xCeu#2)-2xL15
073+((CloxMUxZETA%VINF)-A[u]%QxXIKZETA)%DELXAE7]
CTu«C11xMUxZETA+DELxVINF=xAL 7]
076+(CistUXZETA%DELxVINFXA[7])+(HU%VIHF)+(AEBJ%QXDELXZETA
xXIxAL71)-C10xC73
077«(614xMUxZHTAeDELxVINF)+(A[u]eiuxDELxZETAxXIxAE
7]1)Y-(6xC11xCT3+7)+8x0T4xCL0+7
CT8+{C15xHU=ZETASDEL=VINFxAL7])-C1ixCT4



(1]
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wNQTRLOLY

NQTF K21 V1, PHI1Z; VPRI NST3NF;BF ;013QE P A QL QR PRF ;W
KEF

Z21e 0

BNQ+10

Vi+10

PHI1+10

Z+Z1,ZF

V<V1,VF

We,FGAL 3]

PHI«-PHI1,PHIF

NST«(ALPHAxK=x(PST*x2 ,5)x(20PHISTR)*2):2xUSTxREIXAC
NFETST+VREZ%x2
BF+({(MUxOUxMASSxNSTxUST*2)x0,5)+(Z2+2)x|20PHT
Gle1 8

QE+-Ex((TExTET)*2 . 5)=xDTEDZxTST+RSTx1,0u
FBxUSTxUSTx(RET*2 )xHASSxUST* 2

VTOTPAL ENERGY FLUX ' F
BL+QPLxA+«NSTxBC=xT5TxST

GFE+QPRxA
PRF«{{({ZxRSTxBF)#2)x{(USTxVx(10PHT)*2)-Wx{10PHIT}x(
20PHI)) 04
EEF«(MASS*NF*xVxUST®(ZXPETY*x2)Ix0  Sx((VxUSTI+ )} %2
BEGA~ 2 1 R(E,pZ)p{ZxRE7+063600000C00C ), NP, BF 01,08 ,P,0L, (P«
(pQ1)p0),GR,PRF ,KEF

VRATIOS{O1v

RATIOS

PL+«[]+ 2 1 &(4,pTPLYpFGA[1;]1,(TPL+TPR) ,((TPL+2xTPR)XTE5T+
3),({(TPL+2xTPR)Y+3xME)

voFPLD]v

DFP;GPL; GPR

GPL+(2xQPLx (VFxZP%x2)x(XT+TPL)*0,5)+TPL
CPR<{QPRx(VFxZF*2)}x(XT+TPL)*0,.5)+PPR

O« 2 1 &(S,plPL)pFGAL1;1,6PL,GPR ,{(PPL:TPR), (TPLxT5™)
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vEUNLOIY
FUNiH T PHIGM L XTOGE

[1] "ENTER GPAR, GPER, TPAR, TPER'
(2] N« .
[3] M<IN[3J3I8Cul
(4] XI0+0.001 ZERPO 41 0.001
[(s51] H+(*—XIO*2)x1+(IN[1]XXIO*((QXXIO*Q)%3)—1)—2xIN[2JXXIO
(6] K«Hx0,1x18
(71 PHI«(-0122)+01x(*18)x118
[g] LP«((pE) pPHI)pO
fel IeJel )
[10] CO1:LP[I;J]+«0.001 ZERCP 4 O
[11] J+J+1 .
(12] »(J<pPUI)/CO1
[13] I+I+J+1
[1u4] =(IspkK)/CO1
[15] LP« 2 1 &{{1+pZ),pPHI)p(PEI=360202)},,LP
[16]1 'SCALE FACTOR?
[17] [«S+(2x1.38E 16xIN[31tMA55)*0.5
[18] QO+Sx(:M)*0,5
(18] LP
CELOIV
Z«F X

[11]

(1]

Z4( ((B833)xCAMI 1] ) %X+t )+ (Xx2-CAML1])+CAMT 1]+ (2xCAHT
21)-(Xx+2)x(2%GAMI1])+4xGAM2]

vegLolv

Z+G X3AB
ZeR[T1-(%=-(A*2)+B)x1+(ITF[ 13 xAx( 1+2x(A%x2)+3))+2xIN[
2] % (A+XT0+X*x10PHI[J1) % (" 1+4B+Mx (Xx20PHI[J])*2)

vZEROLTI]V

Z<70L ZFRO EB,T
+Qu\TOL2 |T«F Z+0.,5%x+/B
+1,B[21(0<T)=20<F Bl+Z

YZEROPLOIV

Z<+TO0L ZEROP B;T
+0x\7POL2 | T+G Z2+0,.5%x+ /R
+1,B(2L(0<T)#0< Bl+Z
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